首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes. However, the functional roles and regulatory mechanisms of lncRNAs in heart failure are still unclear. In our study, we constructed a heart failure‐related lncRNA‐mRNA network by integrating probe re‐annotation pipeline and miRNA‐target interactions. Firstly, some lncRNAs that had the central topological features were found in the heart failure‐related lncRNA‐mRNA network. Then, the lncRNA‐associated functional modules were identified from the network, using bidirectional hierarchical clustering. Some lncRNAs that involved in modules were demonstrated to be enriched in many heart failure‐related pathways. To investigate the role of lncRNA‐associated ceRNA crosstalks in certain disease or physiological status, we further identified the lncRNA‐associated dysregulated ceRNA interactions. And we also performed a random walk algorithm to identify more heart failure‐related lncRNAs. All these lncRNAs were verified to show a strong diagnosis power for heart failure. These results will help us to understand the mechanism of lncRNAs in heart failure and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.  相似文献   

2.
3.
4.
环状RNA(circRNA)可以通过竞争性结合微小RNA(miRNA),从而降低miRNA对其他靶标RNAs的抑制作用,进而间接调控其表达水平。这种竞争性关系代表了一种全新的基因调控机制,在癌症生理和发展中起重要作用。我们运用生物信息学的方法,对基因表达谱、circRNA探针谱重注释处理,并且结合MiRanda算法预测的miRNA靶点信息构建了竞争性内源RNA(ceRNA)网络,发现了五个与疾病相关的重要模块。其中通过hsa-miR-17-3p介导的CD74与hsa_circ_0001320,通过hsa-let-7a-2-3p介导的PAPSS2与hsa_circ_0000077两组ceRNA关系在椎间盘变性中起到重要的分子调控作用,从而成为潜在的临床标志物。进一步地,通过对靶基因的功能注释预测了这两个circRNA的生物学功能,其中明显与椎间盘炎症反应和骨发育相关,为临床基因检测预测疾病和药物靶点治疗提供依据并且也为椎间盘疾病的科学研究提供思路。  相似文献   

5.
Studies have indicated that Nel-like molecule-1 (NELL-1) was an osteoblast-specific cytokine and some specific microRNAs (miRNAs) could serve as competing endogenous RNA (ceRNA) to partake in osteogenic differentiation of human adipose-derived stem cells (hASCs). The aim of this study was to explore the potential functional mechanisms of recombinant human NELL-1 protein (rhNELL-1) during hASCs osteogenic differentiation. rhNELL-1 was added to osteogenic medium to activate osteogenic differentiation of hASCs. High-throughput RNA sequencing (RNA-Seq) was performed and validated by real-time quantitative polymerase chain reaction. Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to detect the functions of differentially expressed miRNAs and genes. Coding-noncoding gene co-expression network and ceRNA networks were constructed to predict the potential regulatory role of miRNAs. A total of 1010 differentially expressed miRNAs and 1762 differentially expressed messenger RNAs (mRNAs) were detected. miRNA-370-3p, bone morphogenetic protein 2 (BMP2), and parathyroid hormone like hormone (PTHLH) were differentially expressed during NELL-1-induced osteogenesis. Bioinformatic analyses demonstrated that these differentially expressed miRNAs and mRNAs enriched in Rap1 signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, Glucagon signaling pathway, and hypoxia-inducible factor-1 signaling pathway, which were important pathways related to osteogenic differentiation. In addition, miRNA-370-3p and has-miR-485-5p were predicted to interact with circ0001543, circ0002405, and ENST00000570267 in ceRNA networks. Based on the gain or loss of functional experiments by transfection, the results showed that miR-370-3p was a key regulator in osteogenic differentiation by targeting BMP2 and disturbing the expression of PTHLH, and participated in NELL-1-stimulated osteogenesis. The present study provided the primary data and evidence for further exploration on the roles of miRNAs and ceRNAs during NELL-1-induced ossification of hASCs.  相似文献   

6.
7.
Long noncoding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) has been reported to correlate with a variety of cancers, with its expression pattern and potential mechanism not clarified in gastric cancer (GC). In this study, we demonstrated that DGCR5 was downregulated in cancerous tissues and plasma samples from patients with GC, and its downregulation was associated with advanced TNM stage and positive lymphatic metastasis. Plasma DGCR5 had an area under the receiver operating characteristic curve (AUC) of 0.722 for diagnosis of GC. Gain- and loss-of-function of DGCR5 revealed that DGCR5 functioned as a competing endogenous RNA for miR-23b to suppress GC cell proliferation, invasion and migration, and facilitate apoptosis by regulating PTEN and BTG1 in vitro. Furthermore, the overexpression of DGCR5 suppressed tumor growth, and inhibited the expression of miR-23b and proliferation antigen Ki-67, but increased the expression of PTEN and BTG1 in vivo. In conclusion, our results show that DGCR5 is a tumor-suppressive lncRNA that regulates PTEN and BTG1 expression through directly binding to miR-23b. This mechanism may contribute to a better understanding of GC pathogenesis and provide a potential therapeutic strategy for GC.  相似文献   

8.
《Reproductive biology》2023,23(1):100704
Circular RNAs (circRNAs) have been reported to be implicated in the tumorigenesis and progression of ovarian cancer. Here, the study was designed to explore the activity of human circ_0021573 in ovarian cancer pathogenesis and its regulation through the competing endogenous RNA (ceRNA) crosstalk. Circ_0021573, microRNA (miR)? 936, and cullin 4B (CUL4B) were quantified by qRT-PCR and western blot. Cell proliferation ability was detected by XTT, 5-Ethynyl-2′-Deoxyuridine (EdU), and colony formation assays. Cell apoptosis, migration, and invasion were assessed by flow cytometry, wound-healing, and transwell assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-936 and circ_0021573 or CUL4B 3′UTR. Xenograft studies were applied to assess the role of circ_0021573 in tumor growth. Our data showed that circ_0021573 expression is enhanced in human ovarian cancer. Inhibition of circ_0021573 impedes cell proliferation, migration, and invasion and promotes apoptosis in vitro, as well as diminishes tumor growth in vivo. Mechanistically, circ_0021573 contains a miR-936 binding site, and miR-936 is a relevant mediator of circ_0021573 regulation. MiR-936 direct targets and inhibits CUL4B. MiR-936-mediated suppression of CUL4B hinders cell proliferation, migration, and invasion and accelerates apoptosis in vitro.. These data suggested that circ_0021573 might promote the malignant phenotypes of ovarian cancer cells by functioning as a ceRNA for miR-936 to induce CUL4B, which provided a promising target for the prevention and inhibition of ovarian cancer.  相似文献   

9.
The thymus plays an irreplaceable role as a primary lymphoid organ. However, the complicate processes of its development and involution are incompletely understood. Accumulating evidence indicates that non-coding RNAs play key roles in the regulation of biological development. At present, the studies of the circRNA profiles and of circRNA-associated competing endogenous RNAs (ceRNAs) in the thymus are still scarce. Here, deep-RNA sequencing was used to study the biological mechanisms underlying the development process (from 2-week-old to 6-week-old) and the recession process (from 6-week-old to 3-month-old) of the mouse thymus. It was found that 196 circRNAs, 233 miRNAs and 3807 mRNAs were significantly dysregulated. The circRNA-associated ceRNA networks were constructed in the mouse thymus, which were mainly involved in early embryonic development and the proliferation and division of T cells. Taken together, these results elucidated the regulatory roles of ceRNAs in the development and involution processes of the mouse thymus.  相似文献   

10.
李静秋  杨杰  周平  乐燕萍  龚朝辉 《遗传》2015,37(8):756-764
最新研究表明,RNA之间可以通过竞争结合共同的microRNA反应元件(microRNA response element, MRE)实现相互调节,这种调控模式构成竞争性内源RNA(Competing endogenous RNA, ceRNA)。已发现的ceRNA包括蛋白编码mRNA和非编码RNA,其中后者包括假基因转录物、长链非编码RNA(Long non-coding RNA, lncRNA)、环状RNA(Circular RNA, circRNA)等。文章主要从ceRNA分类的角度,阐述各类ceRNA构成的调控网络发挥的生物学功能在病理和生理相关过程中的作用,以及可能影响ceRNA调控有效性的因素。  相似文献   

11.
Cholangiocarcinoma (CCA) is the second widespread liver tumor with relatively poor survival. Increasing evidence in recent studies showed long noncoding RNAs (lncRNAs) exert a crucial impact on the development and progression of CCA based on the mechanism of competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-regulated ceRNA in CCA, are only partially understood. The expression profile of messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) downloaded from The Cancer Genome Atlas were comprehensively investigated. Differential expression of these three types of RNA between CCA and corresponding precancerous tissues were screened out for further analysis. On the basis of interactive information generated from miRDB, miRTarBase, TargetScan, and miRcode public databases, we then constructed an mRNA-miRNA-lncRNA regulatory network. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were conducted to identify the biological function of the ceRNA network involved in CCA. As a result, 2883 mRNAs, 136 miRNAs, and 993 lncRNAs were screened out as differentially expressed RNAs in CCA. In addition, a ceRNA network in CCA was constructed, composing of 50 up and 27 downregulated lncRNAs, 14 up and 7 downregulated miRNAs, 29 up and 25 downregulated mRNAs. Finally, gene set enrichment and pathway analysis indicated our CCA-specific ceRNA network was related with cancer-related pathway and molecular function. In conclusion, our research identified a novel lncRNA-related ceRNA network in CCA, which might act as a potential therapeutic target for patients with CCA.  相似文献   

12.
Endometrial cancer is one of the most common gynecological malignant tumors. The roles of competing endogenous RNAs (ceRNAs) in this disease, however, remain unclear. In this study, we constructed a ceRNA network to reveal the core ceRNAs in endometrial cancer. Differentially expressed genes were summarized from The Cancer Genome Atlas database, whereupon 140 genes were identified for building the network. Further correlation, survival, and enrichment analyses suggested that these genes may help towards elucidating the molecular mechanisms of endometrial cancer. After validation of the findings with the GSE17025 data set, LINC00958, microRNA-761, and DOLPP1 were highlighted as the critical genes in the ceRNA network. Our work suggests that LINC00958 may regulate DOLPP1 by “sponging” miR-761 in endometrial cancer.  相似文献   

13.
A mounting body of evidence has suggested that long noncoding RNAs (lncRNAs) play critical roles in human diseases by acting as competing endogenous RNAs (ceRNAs). However, the functions and ceRNA mechanisms of lncRNAs in atrial fibrillation (AF) remain to date unclear. In this study, we constructed an AF-related lncRNA-mRNA network (AFLMN) based on ceRNA theory, by integrating probe reannotation pipeline and microRNA (miRNA)-target regulatory interactions. Two lncRNAs with central topological properties in the AFLMN were first obtained. By using bidirectional hierarchical clustering, we identified two modules containing four lncRNAs, which were significantly enriched in many known pathways of AF. To elucidate the ceRNA interactions in certain disease or normal condition, the dysregulated lncRNA-mRNA crosstalks in AF were further analyzed, and six hub lncRNAs were obtained from the network. Furthermore, random walk analysis of the AFLMN suggested that lncRNA RP11-296O14.3 may function importantly in the pathological process of AF. All these eight lncRNAs that were identified from previous steps (RP11-363E7.4, GAS5, RP11-410L14.2, HAGLR, RP11-421L21.3, RP11-111K18.2, HOTAIRM1, and RP11-296O14.3) exhibited a strong diagnostic power for AF. The results of our study provide new insights into the functional roles and regulatory mechanisms of lncRNAs in AF, and facilitate the discovery of novel diagnostic biomarkers or therapeutic targets.  相似文献   

14.
Breast cancer (BCa) is the most common malignant tumor in females. Long noncoding RNAs (lncRNAs) are deregulated in many types of human cancers, including BCa. The purpose of the present study was to examine the expression profile and biological role of HOXD cluster antisense RNA 1 (HOXD-AS1) in BCa. Our results revealed that HOXD-AS1 was upregulated in BCa tissues and cell lines, and high HOXD-AS1 expression was correlated with aggressive clinicopathological characteristics of BCa patients. Further gain-of-function and loss-of-function analysis showed that HOXD-AS1 overexpression promoted, whereas HOXD-AS1 knockdown inhibited BCa cell proliferation, cell cycle progression, migration, and invasion, indicating that HOXD-AS1 may function as a novel oncogene in BCa. Mechanistically, HOXD-AS1 could activate epithelial-mesenchymal transition (EMT) in BCa cells. We further proved that HOXD-AS1 might serve as a competing endogenous RNA of miR-421 in BCa cells, and miR-421 was downregulated and negatively correlated with HOXD-AS1 expression in BCa tissues. Besides, we confirmed that SOX4, a master regulator of EMT, was a direct target gene of miR-421. Further, rescue experiments suggested that miR-421 overexpression partly abrogated the oncogenic role of HOXD-AS1 in BCa cells. Therefore, we shed light on that HOXD-AS1/miR-421/SOX4 axis may be considered as a novel therapeutic target for the treatment of BCa patients.  相似文献   

15.
Small nucleolar RNA host gene 12 (SNHG12) has been indicated in the tumorigenesis of various human cancers, including clear cell renal cell carcinoma (ccRCC). However, the underlying mechanisms of SNHG12 driving progression of ccRCC remain incompletely understood. In the present study, we discovered that SNHG12 is up-regulated in ccRCC and that overexpression of SNHG12 predicted poor clinical outcome of ccRCC patients. SNHG12 knockdown notably inhibited proliferation and migration of RCC cells. Furthermore, we discovered that miR-30a-3p, a putative ccRCC inhibitor, was competitively sponged by SNHG12. Via the crosstalk network, SNHG12 was capable of up-regulating multiple target genes of miR-30a-3p, namely, RUNX2, WNT2 and IGF-1R, which have been identified to facilitate tumorigenesis of ccRCC. Taken together, our present study suggested a novel ceRNA network, in which SNHG12 could promote the malignancy of ccRCC although competitively binding with miR-30a-3p and consequently release the expression of its downstream cancer-related genes.  相似文献   

16.
17.
18.
ABSTRACT

Lumbar disc degeneration (LDD) is a common cause of low back and neck pain. The molecular mechanisms underlying LDD, however, are unclear. Noncoding RNAs have been reported to participate in human diseases. We investigated a series of public datasets (GSE67566, GSE56081 and GSE63492) and identified 568 mRNAs, 55 microRNAs (miRNAs), 765 long noncoding RNAs (lncRNAs), and 586 circular RNAs (circRNAs) that were expressed differently in LDD than in normal discs. We constructed lncRNAs and circRNAs regulated competing endogenous RNAs (ceRNA) networks in LDD. Four lncRNAs, DANCR, CASK-AS1, SCARNA2, and LINC00638), and three circRNAs, hsa_circ_0005139, hsa_circ_0037858, and hsa_circ_0087890, were identified as key regulators of LDD progression. We found that hsa-miR-486-5p regulated the crosstalk among circRNA hsa_circ_0000189, lncRNA DANCR and 6 mRNAs, PYCR2, TOB1, ARHGAP5, RBPJ, CD247, SLC34A1. Gene ontology (GO) analysis demonstrated that these differently expressed lncRNAs and circRNAs were involved in cellular component organization or biogenesis, gene expression and negative regulation of metabolic processes. Our findings provide useful information for exploring new mechanisms for LDD and candidates for therapeutic targets.  相似文献   

19.
Epstein-Barr virus (EBV) BZLF1 gene can trigger EBV from latent infection to lytic replicative phase. The functions of BZLF1 are well known, while little is known about its gene polymorphism. In order to elucidate the sequence variations of BZLF1 and its association with malignancies, we analyzed BZLF1 gene in 24 EBV-associated gastric carcinomas, 41 nasopharyngeal carcinomas and 24 throat washing samples from healthy donors in Northern China using PCR-direct sequencing method. Three types and 8 subtypes of BZLF1 were identified. A dominant type BZLF1-A was found in 67 of 89 (75.3%) isolates. Type BZLF1-B was characterized by a common Ala deletion at residue 127, which was detected in 21 of 89 isolates (23.6%). Type BZLF1-C contained only one isolate (GC103), which had the same sequence with the prototype B95-8. Among 3 functional domains of BZLF1 protein, the transactivation domain had most mutations, followed by the bZIP domains (the DNA binding domain and dimerization domain). No prevalence of any subtypes or mutations in the functional domains among three specimen groups was found (P > 0.05). Our study indicates that BZLF1 subtypes and amino acid changes in functional domains are not preferentially associated with EBV-associated gastric carcinomas or nasopharyngeal carcinomas in Northern China. BZLF1 gene variations are geographically restricted rather than tumor-specific polymorphisms.  相似文献   

20.
Long non‐coding RNA (lncRNA) is one of the important regulators of many malignancies. However, the biological function and clinical significance of a large number of lncRNAs in gastric cancer remain unclear. Therefore, we analysed the TCGA data to find that LINC01303 is significantly up‐regulated in gastric cancer tissues. However, the biological function of LINC01303 in GC remains unknown. In our study, we found that the expression of LINC01303 was significantly higher in GC tissues than in adjacent tissues by real‐time quantitative PCR. We can significantly inhibit the malignant proliferation, migration and invasion of GC cells by silencing LINC01303 expression. In addition, LINC01303 knockdown can also inhibit GC growth in vivo. After the bioinformatics analysis, we found that LINC01303 can be used as a miR‐101‐3p sponge to competitively adsorb miR‐101‐3p with EZH2. Therefore, our results indicate that LINC01303 promotes the expression of EZH2 by inhibiting miR‐101‐3p activity and promotes GC progression. In summary, in this study, we demonstrated for the first time that the LINC01303/miR‐101‐3p/EZH2 axis promotes GC progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号