首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Transgenic soybean cultivars, resistant to glyphosate herbicide in maturity groups V and VI, were evaluated for tolerance to the Columbia lance nematode, Hoplolaimus columbus, in field experiments conducted in 1998 and 1999. Treatment with 43 liter/ha of 1,3-dichloropropene was effective in suppressing H. columbus population densities in a split-plot design. Fumigation increased soybean yield, but a significant cultivar × fumigation interaction indicated variation in cultivar response to H. columbus. A tolerance index (yield of nontreated ÷ yield of treated × 100) was used to compare cultivar differences. Two cultivars in maturity group VI and one cultivar in maturity group V had a tolerance index greater than 90, indicating a high level of tolerance.  相似文献   

2.
Models are presented to describe the influence of rotations of Meloidogyne incognita-susceptible cultivars, resistant cultivars, and maize on postharvest abundance of M. incognita juveniles in the soil. Depending on initial densities of juveniles, monocultured regimes reached equilibrium densities after a few years of 287, 40, and 10 juveniles per 10 cm³ soil for susceptible soybean, resistant soybean, and maize, respectively. Yearly changes in the population density of juveniles due to rotation of these crops were simulated by iterative substitution of the model equations for each crop. A maximum density of 319 per 10 cm³ soil was reached following a susceptible cultivar in a susceptible-resistant soybean rotation. Soybean yield loss estimates are presented for monocultured regimes and for various rotations with maize.  相似文献   

3.
An 11-year field study was initiated in 1979 to monitor population development of Heterodera glycines. Fifty cysts of a race 5 population were introduced into plots in a field with no history of soybean production and that had been in sod for 20 years. Soybean cultivars either susceptible or resistant to H. glycines were grown either in monoculture or rotated with maize in a 2-year rotation. During the first 5 years, resistant cultivars with the Peking source of resistance were planted. After year 5, monocuhure of Peking resistance resulted in 18 cysts/250 cm³ of soil, whereas populations resulting from the continuous cropping of susceptible soybean resulted in 45 cysts/250 cm³. Some plots in all treatments, including control plots, were contaminated at the end of year 5. Crop rotation delayed population development of H. glycines. During years 6 through 11 cv. Fayette (PI88.788 source of resistance) was planted. In year 6 numbers of cysts declined to 1/250 cm³ of soil in the treatment consisting of monocultured Fayette. At the end of year 10, cysts were below the detection level in all treatments in which Fayette was planted. Yield of susceptible soybean in monoculture with or without H. glycines infestation was lower beginning in year 6 when compared to yield of soybean grown in rotation and remained lower throughout the duration of the experiment except for 1987 (year 9). Yields of susceptible and resistant soybean were different each year except for drought years in 1980 and 1988. From 1979 to 1982 differences in yield were due to lower yield potential of resistant cultivars. Except for the drought year, yield of cv. Fayette was greater than susceptible Williams 82 during years 6 through 11.  相似文献   

4.
Quantitative techniques were used to analyze and determine optimal potential profitability of 3-year rotations of cotton, Gossypium hirsutum cv. Coker 315, and soybean, Glycine max cv. Centennial, with increasing population densities of Hoplolaimus columbus. Data collected from naturally infested on-farm research plots were combined with economic information to construct a microcomputer spreadsheet analysis of the cropping system. Nonlinear mathematical functions were fitted to field data to represent damage functions and population dynamic curves. Maximum yield losses due to H. columbus were estimated to be 20% on cotton and 42% on soybean. Maximum at-harvest population densities were calculated to be 182/100 cm³ soil for cotton and 149/100 cm³ soil for soybean. Projected net incomes ranged from a $17.74/ha net loss for the soybean-cotton-soybean sequence to a net profit of $46.80/ha for the cotton-soybean-cotton sequence. The relative profitability of various rotations changed as nematode densities increased, indicating economic thresholds for recommending alternative crop sequences. The utility and power of quantitative optimization was demonstrated for comparisons of rotations under different economic assumptions and with other management alternatives.  相似文献   

5.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

6.
The reproduction of a Wyoming population of Heterodera schachtii was determined for resistant trap crop radish (Raphanus sativus) and mustard (Sinapis alba) cultivars, and resistant and susceptible sugar beet (Beta vulgaris) cultivars in a greenhouse (21 °C/16 °C) and a growth chamber study (25 °C). Oil radish cultivars also were field tested in 2000 and 2001. In the greenhouse study, reproduction was suppressed similarly by the resistant sugar beet cultivar Nematop and all trap crop cultivars (P ≤ 0.05). In the growth chamber study, the radish cultivars were superior to most of the mustard cultivars in reducing nematode populations. All trap crops showed less reproduction than Nematop (P ≤ 0.05). In both studies, Nematop and all trap crops had lower Pf than susceptible sugar beet cultivars HH50 and HM9155 (P ≤ 0.05). In field studies, Rf values of radish cultivars decreased with increasing Pi of H. schachtii (r² = 0.59 in 2000 and r² = 0.26 in 2001). In 2000, trap crop radish cv. Colonel (Rf = 0.89) reduced nematode populations more than cv. Adagio (Rf = 4.67) and cv. Rimbo (Rf = 13.23) (P ≤ 0.05) when Pi was lower than 2.5 H. schachtii eggs and J2/cm³ soil. There were no differences in reproductive factors for radish cultivars in 2001 (P ≤ 0.05); Rf ranged from 0.23 for Adagio to 1.31 for Commodore for all Pi.  相似文献   

7.
Damage functions and reproductive curves were determined for Hoplolaimus columbus on cotton cv. Deltapine 90 and soybean cv. Gordon over 2 years in field plots in Georgia. Maximum potential yield suppressions of 18% on cotton and 48% on soybean were predicted with respect to increasing Pi. Similar functions indicated yield suppressions of 38% on cotton and 30% on soybean with respect to increasing midseason nematode densities (Pm). Maximum Pf predicted by reproductive curves were 123 and 474/100 cm³ soil on cotton and soybean, respectively. Thresholds at which 10% yield suppression would occur were lower on soybean (Pi of 4) than on cotton (Pi of 70/100 cm³ soil). The economic threshold for a control measure costing $72/ha was a Pi of 60/100 cm³ soil on cotton, assuming a price for cotton lint of $1.44/kg ($0.60/lb), whereas a similar treatment would not be economically feasible on soybean at any Pi with an assumed price of $0.04/kg ($5.50/bu) soybean seed. Damage functions and reproductive curves as determined in this study offer potentially useful tools for analyzing cropping systems and providing decision tools for nematode management.  相似文献   

8.
Soybean cyst nematode resistant ''Fayette'' and susceptible ''Williams 79'' soybeans (Glycine max) and resistant ''WIS (RRR) 36'' and susceptible ''Eagle'' snap beans (Phaseolus vulgaris) were used in determining the effects of host and temperature on the development, female production, sex ratios, and host response to Heterodera glycines. Temperatures were maintained constant at 16, 20, 24, 28, and 32 C using water-filled tanks. The most rapid development and greatest female production occurred between 20 and 28 C. The equation DS = 5(10⁻⁶)x²y² - 3(10⁻⁴)x²y - 2.8(10⁻³)x² - 1.94(10⁻²)y² + 0.4288x + 1.0220y - 12.7185, where DS = developmental stage, X = time, and Y = temperature, predicted the developmental stage of the nematode and accounted for 84% of the variation. Male : female ratios did not differ within this range and were generally less than one. At all temperatures the resistant soybean produced the greatest number of necrotic responses to H. glycines infection, followed by the resistant snap bean. The susceptible soybean and snap bean produced the fewest necrotic responses.  相似文献   

9.
Seedlings of tobacco cultivars resistant (NC95) and susceptible (McNair 30) to Meloidogyne incognita were grown in 15-cm diameter clay pots containing steamed soil infested with 0, l, 2, 4, 8, 16, 32, and 64 eggs of M. incognita per 1.5 cm³ soil. Plants were maintained in the greenhouse for 3 weeks, and then transferred to the field for 12 weeks. Growth of tobacco was expressed separately as dry weight of leaves and as plant height. Least squares regression analysis showed that tobacco growth-nematode density interactions are in agreement with Seinhorst''s exponential model Y = m + (l-m) czp. Tobacco growth was not affected significantly as nematode density was increased from 0 to tolerance levels, which were approximately 2 and 1 eggs per 1.5 cm³ soil for the resistant and susceptible cultivars, respectively. As nematode density was increased beyond tolerance level, tobacco growth decreased sharply until a minimum yield was approached. The minimum leaf weights and plant heights of the resistant cultivar at the highest nematode density were greater than those of the susceptible cultivar.  相似文献   

10.
The effect o f soil temperature on parasitism and development of Rotylenchulus reniformis on resistant (''Peking'' and ''Custer'') and susceptible (''Hood'' and ''Lee'') soybean (Glycine max) cultivars was studied. Soil temperatures of 15, 21.5, 25, 29.5 and 36 C ± 1 C were maintained in temperature tanks in a greenhouse. R. reniformis developed best at 25 and 29.5 C. The female life cycle can be completed within 19 days after inoculation under favorable conditions at 29.5 C. Plant root growth was best at 21.5 C. During a 27-day period, no egg masses were present on nematodes feeding on roots grown at 15 and 36 C. Egg masses developed on Hood but not on Lee when nematodes were introduced into soil and maintained at 29.5 C for 2 days before raising the temperature to 36 C.  相似文献   

11.
With methods developed in this study, varietal responses to M. javanica were evaluated and heritability of resistance of two promising carrot cultivars was estimated. More egg masses were found on root systems inoculated with eggs added to the soil in three holes in 250 cm³ cups than by mixing the inoculum with soil in the cups. A resistant breeding line, CNPH 1437, was discriminated from susceptible cultivar Nova Kuroda with inoculum levels higher than 2,000 eggs per cup. Greenhouse and field results suggested that cultivars Nantes Superior and Shin Kuroda were susceptible, Kuronan was somewhat tolerant, and Brasilia and Tropical were resistant to M. javanica. Nantes Superior or Shin Kuroda yielded less in carbofuran-treated soil (3 kg a.i./ha) than Kuronan, Brasilia, and Tropical did in nontreated soil. However, incorporation of the nematicide greatly increased yields of Kuronan (32%), Brasilia (62%), and Tropical (91%). Primary root galling at the seedling stage was an adequate parameter for resistance evaluation. Estimated heritability were 0.48 ± 0.07 for primary root galling and 0.35 ± 0.08 for egg mass production in Brasilia, and 0.16 ± 0.11 for primary root galling and 0.31 ± 0.09 for egg mass production in Kuronan.  相似文献   

12.
The influence of resistant and susceptible potato cultivars on Globodera rostochiensis population density changes was studied at different nematode inoculum levels (Pi) in the greenhouse and field. Soil in which one susceptible and two resistant cultivars were grown and fallow soil in pots was infested with cysts to result in densities of 0.04-75 eggs/cm³ soil. A resistant cultivar was grown in an infested field with Pi of 0.7-16.7 eggs/cm³ soil. Pi was positively correlated with decline of soil population densities due to hatch where resistant potatoes were grown in the greenhouse and in the field but not in fallow soil. However, Pi was not correlated with in vitro hatch of G. rostochiensis cysts in water or potato root diffusate. Under continuous culture o f a resistant cultivar, viable eggs per cyst declined 60-90% per plant growth cycle (4 weeks) and the number of cysts containing viable eggs had decreased by 77% after five cycles. The rate of G. rostochiensis reproduction on both resistant and susceptible cultivars was negatively correlated with Pi. These data were used to predict the effect of resistant and susceptible potato cultivars on G. rostochiensis soil population dynamics.  相似文献   

13.
The effectiveness of selected cultural practices in managing the Columbia lance nematode, Hoplolaimus columbus, on cotton was evaluated in experiments in growers'' infested fields. The effects of planting date, cotton cultivar, treatment with the growth regulator mepiquat chloride, and destruction of cotton-root systems after harvest on cotton-lint yield and population densities of H. columbus were studied. The yield of cotton cultivar Deltapine 50 was negatively related (P = 0.054) to initial population density of H. columbus whereas the yield of Deltapine 90 was not affected by preplant density of this nematode, indicating tolerance in Deltapine 90. Reproduction of this nematode did not differ on the two cultivars. Planting date and treatment with the growth regulator mepiquat chloride did not influence cotton yield in a consistent manner. Application of mepiquat chloride suppressed (P ≤ 0.05) numbers of Columbia lance nematode, although there was an interaction (P ≤ 0.05) with cultivar and year. Early vs. late destruction of cotton-root systems did not impact population densities of this nematode either year, and had no impact on the subsequent cotton crop. The nematicide fenamiphos increased (P ≤ 0.03) cotton yield when H. columbus numbers exceeded the damage threshold.  相似文献   

14.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types.  相似文献   

15.
Populations of Heterodera glycines identifiable as race 1 reproduced on the race 1 resistant ''Bedford'' soybean. A Beaufort County, North Carolina, population had an index of parasitism of 112% on Bedford in greenhouse tests. Indices of parasitism for this population on race 1 resistant cultivars Pickett 71, Centennial, and Forrest were less than 10%. The Beaufort County population had significantly greater reproduction on Bedford in microplots than did populations of race 3 or race 4. In field tests, a race 1 population suppressed yields of Bedford but not yields of Centennial. Based on these data, Bedford is no longer recommended in North Carolina as a race 1 resistant cultivar.  相似文献   

16.
The invasion by three different Utah populations of Pratylenchus neglectus (UTI, UT2, UT3) was similar in single and interplantings of ''Lahontan'' alfalfa and ''Fairway'' crested wheatgrass at 24 ñ 3 °C. Population UT3 was more pathogenic than UT1 and UT2 on both alfalfa and crested wheatgrass. Inoculum density was positively correlated with an invasion by P. neglectus. Invasions by UT3 at all initial populations (Pi) exceeded that of UT1 and UT2 for both single and interplanted treatments. The greatest reductions in shoot and root weights of alfalfa and crested wheatgrass were at a Pi of 8 P. neglectus/cm³ soil. Pi was negatively correlated with alfalfa and crested wheatgrass shoot and root growth and nematode reproduction. The reproductive factor (Rf) for UT3 exceeded that of UT1 and UT2 in single and interplantings at all inoculum levels. There were no differences in Rfin the Utah populations in single or interplantings. A nematode invasion increased with temperature and was greatest at 30 °C. Population UT3 was more pathogenic than UT1 and UT2 and reduced shoot and root growth at all soil temperatures. Populations UT1 and UT2 reduced shoot and root growth at 20-30 °C. Soil temperature was negatively correlated with shoot and root growth and positively correlated with nematode reproduction. Reproduction of UT3 exceeded that of UT1 and UT2 at all soil temperatures.  相似文献   

17.
Fifty-four susceptible soybean, Glycine max, cultivars or plant introductions were evaluated for tolerance to H. glycines, the soybean cyst nematode (SCN). Seed yields of genotypes were compared in nematicide-treated (1,2-dibromo-3-chloropropane, 58 kg a.i./ha) and nontreated plots at two SCN-infested locations over 3 years. Distinct and consistent levels of tolerance to SCN were observed among soybean genotypes. PI 97100, an introduction from Korea, exhibited the highest level of tolerance with an average tolerance index ([yield in nontreated plot ÷ yield in nematicide-treated plot] × 100) of 96 over 2 years. Coker 156 and Wright had moderate levels of tolerance (range in index values 68 to 95) compared to the intolerant cuhivars Bragg and Coker 237 (range in index values 33 to 68). Most of the soybean genotypes evaluated were intolerant to SCN. The rankings of five genotypes for tolerance to SCN and Hoplolaimus columbus were similar. Tolerance for seed yield was more consistently correlated with tolerance for plant height (r = 0.55 to 0.64) than for seed weight (r = 0.23 to 0.65) among genotypes.  相似文献   

18.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

19.
Alternate planting dates and periodic destruction of the previous year''s soybean crop as well as 1-year bare fallow were used to establish a range of population densities ofHeterodera glycines for the subsequent year. Soybean cultivar Coker 156 (susceptible, moderately tolerant) was compared to cultivars Essex (susceptible, intolerant) and Bedford (resistant) to evaluate tolerance at different H. glycines population densities established through the previous year''s treatments. Yield of Coker 156 was consistently intermediate between yields of Bedford and Essex in 1986 and 1987. Yield of Essex was negatively correlated (P = 0.05) with preplant egg numbers of H. glycines in 1987, whereas yield of Bedford and Coker 156 were not related to nematode density. Reproduction of H. glycines was greater (P = 0.05) on the moderately tolerant Coker 156 than on either of the other cultivars.  相似文献   

20.
Cropping systems in which resistant potato cultivars were grown at different frequencies in rotation with susceptible cultivars and a nonhost (oats) were evaluated at four initial nematode population densities (Pi) for their ability to maintain Globodera rostochiensis at a target level of <0.2 egg/cm³ of soil. At a Pi of 0.1 to 1 egg/cm³ of soil, cropping systems with 2 successive years of a resistant cultivar every 3 years of potato production reduced and maintained G. rostochiensis at <0.2 egg/cm³ of soil. At a Pi of 1 to 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar followed by 1 year of oats for every 4 years of production were necessary to reduce and maintain G. rostochiensis populations at <0.2 egg/cm³ of soil. At a Pi greater than 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar plus 1 year of oats reduced G. rostochiensis densities to <0.2 egg/cm³ of soil, but the population increased above that density after cropping 1 year to a susceptible cultivar. The numbers of cysts and eggs per cyst in the final population (Pf) of G. rostochiensis were influenced by initial density and the frequency of growing a susceptible cultivar in a cropping system. The lowest number of cysts and eggs per cyst in the final G. rostochiensis population occurred with a cropping system consisting of 2 successive years of a resistant cultivar followed by oats with a susceptible cultivar grown the fourth year of production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号