首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb.

The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI. Injections in lateral SI representing the face produced dense terminal label in the contralateral trigeminal complex. Injections in cortex devoted to the forelimb and forepaw labeled the contralateral cuneate nucleus and parts of the dorsal horn of the spinal cord. The cortical injections also demonstrated interconnections of parts of SI with some of the other regions of cortex with projections to the spinal cord, and provided further evidence for the existence of PV in rats.  相似文献   

2.
Pre-cue activity, the neuronal modulation that precedes a predictable stimulus, was studied in the premotor cortex of three rhesus monkeys. In one condition, a directional cue dictated the timing and target of a forelimb movement. In another condition, a non-directional cue provided identical timing information but did not indicate the target. Of 501 task-related neurons recorded in premotor cortex, 168 showed pre-cue activity. The onset time of pre-cue activity varied markedly from trial to trial and cell to cell, ranging from trial initiation to 4.8 sec later. No pre-cue activity reflected the direction of limb movement; thus, the data argue against the hypothesis that pre-cue activity reflects preparation for specific limb movements. A small number of cells showed greater pre-cue activity before directional than before nondirectional cues, and this difference may reflect anticipation of the cue's directional information. However, the vast majority (84%) of neurons lacked such differences. We therefore hypothesize that most pre-cue activity reflects or contributes to a facet of behavior common to the two conditions: anticipation of the time and/or nature of events.  相似文献   

3.
4.
“Set-related activity” has been defined as a significant alteration in neuronal discharge rate during an “instructed delay period,” a period when a previously instructed movement is being withheld. It has been argued that set-related activity in the primate premotor cortex, or at least a significant proportion of it, reflects motor preparation. In most previous investigations, however, in which visual stimuli have triggered the movement and simultaneously indicated its target, set-related activity might reflect either the anticipation of or attention to the trigger stimulus. The present report shows that set-related activity is robust and can be directionally selective when trigger stimuli do not indicate the target and when a trigger stimulus is absent. Another feature of previous studies has been the relatively brief intervals between the instruction and trigger stimuli (typically 3 sec or less). In the present study, we were able to observe the activity of a small number of cells during longer delay periods. Set-related activity persists, although it becomes less consistent, for as much as 7.5 sec after an instruction stimulus. These results support the hypothesis that set-related activity reflects the preparation for specific limb movements.  相似文献   

5.
《Current biology : CB》2020,30(14):2777-2790.e4
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   

6.
The organization of somatosensory input and the input-output relationships in regions of the agranular frontal cortex (AGr) and granular parietal cortex (Gr) were examined in the chronic awake guinea pig, using the combined technique of single-unit recording and intracortical microstimulation (ICMS). AGr, which was cytoarchitectonically subdivided into medial (AGrm) and lateral (AGrl) parts, also can be characterized on a functional basis. AGrl contains the head, forelimb, and most hindlimb representations; only a small number of hindlimb neurons are confined in AGrm. Different distributions of submodalities exist in AGr and Gr: AGr receives predominantly deep input (with the exception of the vibrissa region, which receives cutaneous input), whereas neurons of Gr respond almost exclusively to cutaneous input. The cutaneous or deep receptive field (RF) of each neuron was determined by natural peripheral stimulation. All studied neurons were activated by small RFs, with the exception of lip, nose, pinna, and limb units of lateral Gr (Grl), for which the RFs were larger.

Microelectrode mapping experiments revealed the existence of three spatially separate, incomplete body maps in which somatosensory and motor representations overlap. One body map, with limbs medially and head rostrolaterally, is contained in AGr. A second map, comparable to the first somatosensory cortex (SI) of other mammals, is found in Gr, with hindlimb, trunk, forelimb, and head representations in an orderly mediolateral sequence. An unresponsive zone separates the head area from the forelimb region. A third map, with the forelimb rostrally and the hindlimb caudally, lies adjacent and lateral to the SI head area. This limb representation, which is characterized by an upright and small size compared to that found in SI, can be considered to be part of the second somatosensory cortex (SII). A distinct head representation was not recognized as properly belonging to SII, but the evidence that neurons of the SI head region respond to stimulation of large RFs located in lips, nose, and pinna leads us to hypothesize that the SII face area overlaps that of SI to some extent, or, alternatively, that the two areas are strictly contiguous and the limits are ambiguous, making them difficult to distinguish.

The input-output relationships were based on the results of RF mapping and ICMS in the same electrode penetration. The intrinsic specific interconnections of cortical neurons whose afferent input and motor output is related to identical body regions show a considerable degree of refinement. The input-output correspondence is especially pronounced for neurons with small RFs. This study confirms and extends similar data recently reported for other rodents.  相似文献   

7.
《Neuron》2023,111(2):275-290.e5
  1. Download : Download high-res image (177KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
The binding characteristics of [3H]proprionyl-neuropeptide Y ([3H]proprionyl-NPY) were studied in frontal cortical membranes prepared from rat and human postmortem tissue. The specific binding of NPY decreased as the magnesium concentration increased from 1.05 to 10 mM. The binding was also influenced by the concentration of GTP in the buffer medium, with a resulting 45% decrease in NPY binding in the presence of 10(-6) M GTP. Using equilibrium binding studies, [3H]proprionyl-NPY was found to bind in both tissues with high affinity to a single class of receptors with a similar KD (0.035 nM). However, kinetic experiments in both tissues provided evidence for two components of [3H]proprionyl-NPY binding which may be related to receptor states. Competition binding experiments showed that peptide YY (PYY) was equal to NPY in its ability to displace [3H]proprionyl-NPY, whereas rat and human pancreatic polypeptide were without effect up to a concentration of 10(-6) M. This suggests that, whereas PYY and NPY may compete for the same receptor(s), the pancreatic polypeptides probably act on a separate population of receptors.  相似文献   

10.
脑对多感觉信息的整合是人和高等动物获取环境中有意义信息的重要方式。长期以来科学界一直认为,脑对不同感觉刺激(包括视觉、听觉、躯体感觉等)信息的分析和加工由不同的感觉皮层介导,最终在联络皮层进行整合,形成综合性的感觉和意识,但最近的一些实验证据显示,以前被认为只负责对单一感觉刺激分析和处理的感觉皮层亦可受其他感觉刺激的影响并直接参与多感觉信息的整合作用,这些新的发现对过去传统的大脑皮层功能分区概念提出了严峻的挑战。就近些年来有关感觉皮层(主要包括听觉、视觉和躯体感觉皮层)对多感觉刺激信息整合的研究进行综述,以增加人们对大脑皮层功能的新认识,为感觉信息处理和编码及感觉信息整合的后续研究提供借鉴。  相似文献   

11.
The Brodmann area(BA)-based map is one of the most widely used cortical maps for studies of human brain functions and in clinical practice; however, the molecular architecture of BAs remains unknown. The present study provided a global multiregional proteomic map of the human cerebral cortex by analyzing 29 BAs. These 29 BAs were grouped into 6 clusters based on similarities in proteomic patterns: the motor and sensory cluster, vision cluster, auditory and Broca’s area cluster, Wernicke’s area c...  相似文献   

12.
We have modeled biologically realistic neural networks that may be involved in contextual modulation of stimulus responses, as reported in the neurophysiological experiments of Motter (1994a, 1994b) (Journal of Neuroscience, 14:2179–2189 and 2190–2199). The networks of our model are structured hierarchically with feedforward, feedback, and lateral connections, totaling several thousand cells and about 300,000 synapses. The contextual modulation, arising from attention cues, is explicitly modeled as a feedback signal coming from the highest-order cortical network. The feedback signal arises from mutually inhibitory neurons with different stimulus preferences. Although our model is probably the simplest one consistent with available anatomical and physiological evidence and ignores the complexities that may exist in high-level cortical networks such as the prefrontal cortex, it reproduces the experimental results quite well and offers some guidance for future experiments. We also report the unexpected observation of 40 Hz oscillations in the model.  相似文献   

13.
Glutamatergic mechanisms have been investigated in postmortem brain samples from schizophrenics and controls. D-[3H]Aspartate binding to glutamate uptake sites was used as a marker for glutamatergic neurones, and [3H]kainate binding for a subclass of postsynaptic glutamate receptors. There were highly significant increases in the binding of both ligands to membranes from orbital frontal cortex on both the left and right sides of schizophrenic brains. The changes are unlikely to be due to antemortem neuroleptic drug treatment, because no similar changes were recorded in other areas. A predicted left-sided reduction in D-[3H]aspartate binding was refuted at 5% probability, but not at 10%. Previously reported high concentrations of dopamine in left amygdala were strongly associated with low concentrations of D-[3H]aspartate binding in left polar temporal cortex in the schizophrenics. The findings are compatible with an overabundant glutamatergic innervation of orbital frontal cortex in schizophrenia. The results also suggest that schizophrenia may involve left-sided abnormalities in the relationship between temporal glutamatergic and dopaminergic projections to amygdala.  相似文献   

14.
《Neuron》2022,110(24):4194-4211.e10
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   

15.
The reciprocal connections between primary motor (M1) and primary somatosensory cortices (S1) are hypothesized to play a crucial role in the ability to update motor plans in response to changes in the sensory periphery. These interactions provide M1 with information about the sensory environment that in turn signals S1 with anticipatory knowledge of ongoing motor plans. In order to examine the synaptic basis of sensorimotor feedforward (S1–M1) and feedback (M1–S1) connections directly, we utilized whole-cell recordings in slices that preserve these reciprocal sensorimotor connections. Our findings indicate that these regions are connected via direct monosynaptic connections in both directions. Larger magnitude responses were observed in the feedforward direction (S1–M1), while the feedback (M1–S1) responses occurred at shorter latencies. The morphology as well as the intrinsic firing properties of the neurons in these pathways indicates that both excitatory and inhibitory neurons are targeted. Differences in synaptic physiology suggest that there exist specializations within the sensorimotor pathway that may allow for the rapid updating of sensory–motor processing within the cortex in response to changes in the sensory periphery.  相似文献   

16.
The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between ‘where’ versus ‘what’ needs revision. We propose a refinement of this model, which is more complex than the simple spatial–non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.  相似文献   

17.
18.
We performed a functional near-infrared spectroscopy (fNIRS) study of the evoked hemodynamic responses seen in hand and face sensorimotor cortical representations during (1) active motor tasks and (2) pulsed pneumotactile stimulation. Contralateral fNIRS measurements were performed on 22 healthy adult participants using a block paradigm that consisted of repetitive right hand and right oral angle somatosensory stimulation using a pulsed pneumotactile array stimulator, and repetitive right-hand grip compression and bilabial compressions on strain gages. Results revealed significant oxyhemoglobin (HbO) modulation across stimulus conditions in corresponding somatotopic cortical regions. Of the 22 participants, 86% exhibited a decreased HbO response during at least one of the stimulus conditions, which may be indicative of cortical steal, or hypo-oxygenation occurring in channels adjacent to the primary areas of activation. Across all conditions, 56% of participants’ HbO responses were positive and 44% were negative. Hemodynamic responses most likely differed across hand and face motor and somatosensory cortical regions due to differences in regional arterial/venous anatomy, cortical vascular beds, extent and orientation of somatotopy, task dynamics, and mechanoreceptor typing in hand and face. The combination of optical imaging and task conditions allowed for non-invasive examination of hemodynamic changes in somatosensory and motor cortices using natural, pneumatic stimulation of glabrous hand and hairy skin of the lower face and functionally relevant and measurable motor tasks involving the same structures.  相似文献   

19.
在睡眠剥夺(sleep deprivation, SD)过程中,人类大脑的神经活动和警觉水平如何受到影响,尤其是感觉运动和视觉系统,目前仍是研究的热点。静息状态功能磁共振成像(resting state functional magnetic resonance imaging,rfMRI)作为一种反映人脑自发活动的非侵入式成像技术,在睡眠剥夺的研究中得到了广泛应用。本研究采用9次重复rfMRI和心理运动警觉任务(psychomotor vigilance task,PVT),以探索23名志愿者在整个36小时的睡眠剥夺过程中神经活动和警觉水平的变化。我们采用基于PVT的平均反应时间(mean reaction time, MRT)和失效率(lapses ratio, LR)评估警觉水平的变化。我们采用基于rfMRI的区域同质性(region homogeneity,ReHo)和低频波动幅度(amplitude of low frequency fluctuation,ALFF)评估大脑神经活动变化。结果表明,感觉运动网络(sensorimotor network, SMN)和视觉区域(visual network, VN)是受到睡眠剥夺影响最严重的区域。我们采用组独立成分分析(Group Independent component analysis, GICA)将视觉相关区域划分为视觉I区、视觉II区、视觉关联区,并从解剖自动标记(Anatomical automatic labeling,AAL)模板中提取运动感觉相关区域,包括中央前/中央后回、中央旁小叶和辅助运动区。我们发现,睡眠剥夺后16 - 30小时脑神经活动及警惕性下降。我们采用2×3重复测量方差分析,探讨睡眠压力、昼夜节律及其交互作用对感觉运动相关和视觉相关脑区神经活动的影响。我们观察到睡眠压力与交互作用对感觉运动相关区域和视觉相关区域有显著影响。我们采用皮尔逊相关系数评估警觉水平变化与感觉运动相关和视觉相关脑区神经活动变化的关系。睡眠剥夺期间所有感觉运动相关区域的神经活动变化与警觉变化均存在显著的相关关系。我们的研究结果证实,睡眠剥夺从第一天24:00开始改变SMN和VN的警戒水平和神经活动,睡眠压力和昼夜节律在睡眠剥夺期间调节SMN和VN的神经活动。此外,昼夜节律的效应受到睡眠压力的显著调节。感觉运动相关区域和视觉相关区域的增强导致他们远程连接的减弱,这可能是睡眠剥夺期间响应时间变慢的原因。  相似文献   

20.
Several types and subtypes of vocalizations which have a behavioral impact on degu pups were identified. Among these the complex “mothering call” which is exclusively uttered by females and first during extensive nursing periods in the nest is a candidate for filial learning. In 14C-2-fluoro-2-deoxyglucose (FDG) experiments two-weeks-old pups raised by normal mothers showed higher metabolic activity in somatosensory frontoparietal and frontal cortex upon play back of a mothering call than pups raised by muted mothers. It is suggested that pups learn to associate the mothering call with close body contact with their mother early in life. In addition, FDG representation of the call, of its components and of tone and noise stimuli were studied in degu auditory cortex. Five fields and some aspects of tonotopic organization were identified. The mothering call activated all fields, but with more spatial extent of labeling in normally raised pups. A rostral field was activated by play-back of the mothering call, noise, and two-tone sequences, but hardly by single-frequency tones and the narrow-band component of the mothering call. Accepted: 13 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号