首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.  相似文献   

2.
We evaluated the ability of the nematode-pathogenic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes) to reduce root penetration and population increase of Pratylenchus penetrans on potato. Experiments were conducted at 24 C in a growth chamber. When nematodes were placed on the soil surface 8 cm from a 14-day-old potato cutting, the fungus decreased the number entering roots by 25%. To determine the effect of the fungus on population increase after the nematodes entered roots, we transplanted potato cuttings infected with P. penetrans into Hirsutella-infested and uninfested soil. After 60 days, the total number of nematodes (roots and soil) was 20 ± 4% lower in Hirsutella-infested than in uninfested soil.  相似文献   

3.
Roots of seedlings of red clover and alfalfa growing on 10⁻¹ Hoagland and Arnon solution agar were inoculated with various combinations of Meloidogyne incognita and Pratylenchus penetrans. Egg-laying by P. penetrans decreased as the number of nematodes, the ratio of entrant M. incognita to entrant P. penetrans, and the priority of invasion of roots by M. incognita increased. Embryogeny and hatching of eggs of P. penetrans, and development of larvae of M. incognita, were not affected. In red clover, the greatest red uction occurred when there were 65 entrant nematodes, the ratio of M. incognita:P. penetrans was 4:1 and M. incognita was inoculated four days prior to P. penetrans. In alfalfa, the less-favorable host for both nematodes, the greatest reduction occurred when there were 45 entrant nematodes, the ratio of M. incognita:P. penetrans was 2:1, and M. incognita was inoculated 4 days prior to P. penetrans.  相似文献   

4.
Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of ''Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria.  相似文献   

5.
The population density of Helicotylenchus lobus and the percentage of the population with spores of Pasteuria penetrans were determined for 10 monthly intervals in naturally infested turf grass soil at Riverside, California. The percentage of nematodes with attached spores ranged from 40% to 67%. No relationship was found between nematode density and the percentage of nematodes with spores. The mean and maximum numbers of spores adhering per nematode with at least one spore ranged from 2 to 8 and 7 to 66, respectively. The mean number of spores per nematode (based on total number of H. lobus) was correlated with the percentage of nematodes with spores. Spores adhered to both adult and juvenile H. lobus. Between 9% and 32% of the nematodes with spores had been penetrated and infected by the bacterium. Many infected nematodes were dead, but mature spores were also observed within living adult and juvenile H. lobus that exhibited no apparent reduction in viability and motility. Spore and central endospore diameters of this P. penetrans isolate were larger than those reported for the type isolate from Meloidogyne incognita, but transmission and scanning electron microscopy did not reveal significant morphological differences between the two isolates. Spores of the isolate associated with H. lobus did not adhere to juveniles of M. incognita.  相似文献   

6.
7.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

8.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.  相似文献   

9.
Two hundred soil samples from the Ap horizon of a reed canarygrass field overlaying several different but related soils in northern Minnesota were analyzed for plant-parasitic nematodes and 22 edaphic factors. Pratylenchus penetrans was the predominant nematode taxon. Others were Aglenchus agricola, Tylenchorhynchus spp., Heterodera trifolii, Paratylenchus spp., Tylenchus maius, and Criconemella sp. Five nematode taxa, P. penetrans, A, agricola, Tylenchorhynchus spp., H. trifolii, and Paratylenchus spp., were correlated with particle size, Tylenchus maius and Criconemella sp. were correlated with effective cation exchange capacity. Nematode field spatial arrangements were related to a combination of statistically significant positive and negative soil factor effects on the nematode populations. Contour maps derived by geostatistical techniques were used to visually validate statistically significant correlations of nematode and soil data. Contour mapping to supplement traditional statistical techniques can be used to achieve a more holistic approach to studies of nematode-soil interrelationships.  相似文献   

10.
Four similar growth chamber experiments were conducted to test the hypothesis that the initial population density (Pi) of Pratylenchus penetrans influences the severity of interactive effects of P. penetrans and Verticillium dahliae on shoot growth, photosynthesis, and tuber yield of Russet Burbank potato. In each experiment, three population densities of P. penetrans with and without concomitant inoculation with V. dahliae were compared with nematode-free controls. The three specific Pi of JR penetrans tested varied from experiment to experiment but fell in the ranges 0.8-2.5, 1.8-3.9, 2.1-8.8, and 7.5-32.4 nematodes/cm³ soil. Inoculum of V. dahliaewas mixed into soil, and the assayed density was 5.4 propagules/gram dry soil. Plants were grown 60 to 80 days in a controlled environment. Plant growth parameters in two experiments indicated significant interactions between P. penetrans and V. dahliae. In the absence of V. dahliae, P. penetrans did not reduce plant growth and tuber yield below that of the nematode-free control or did so only at the highest one or two population densities tested. In the presence of K dahliae, the lowest population density significantly reduced shoot weight and photosynthesis in three and four experiments, respectively. Higher densities had no additional effect on shoot weight and caused additional reductions in photosynthesis in only one experiment. Population densities of 0.8 and 7.5 nematodes/cm³ soil reduced tuber yield by 51% and 45%, whereas higher densities had no effect or a 15% additional effect, respectively. These data indicate that interactive effects between P. penetrans and V. dahliae on Russet Burbank potato are manifested at P. penetrans population densities less than 1 nematode/cm³ soil and that the nematode population density must be substantially higher before additional effects are apparent.  相似文献   

11.
A non-chemical technique for surface sterilizing plant-parasitic nematodes for aseptic cultures is described. The method is most applicable to nematodes with active migratory infective stages and requires only a few starting specimens. Rate of achieving a primary aseptic culture with the technique ranged from 60%-100% depending on the conditions of the specimens collected for culturing. Aseptic cultures of species of Meloidogyne, Rotylenchuluz, Pratylenchus, and Radopholus initiated with the method remained contamination-free after 12 months of maintenance in tomato root explant or alfalfa callus cultures. Further studies of Pluronic F127, a polyol gel medium employed in the technique to confine the spread of contaminating bacteria or fungi associated with the nematodes, showed that the polyol gel was a suitable support medium for culturing corn root explant, alfalfa callus tissues, and consequently Pratylenchus species including P. agilis, P. brachyurus, P. scribneri, and P. penetrans. During the course of 10 months, P. penetrans reared in polyol-base medium followed a standard biological growth curve, multiplied to a higher population density, maintained a similar female-to-male ratio, and possessed a similar tendency to reside inside or outside host tissues as did P. penetrans reared in agar-base medium. The percentages of P. penetrans juveniles in the sub-populations residing outside or inside the host tissues reared in polyol-base medium also were similar to and fluctuated temporally in like manner as those reared in agar-base medium. Members of these sub-populations from the polyol- or agar-base were equally infective and reproductive after 9 months of culturing.  相似文献   

12.
The role of Pasteuria penetrans in suppressing numbers of root-knot nematodes was investigated in a 7-year monocuhure of tobacco in a field naturally infested with a mixed population of Meloidogyne incognita race 1 and M. javanica. The suppressiveness of the soil was tested using four treatments: autoclaving (AC), microwaving (MW), air drying (DR), and untreated. The treated soil bioassays consisted of tobacco cv. Northrup King 326 (resistant to M. incognita but susceptible to M. javanica) and cv. Coker 371 Gold (susceptible to M. incognita and M. javanica) in pots inoculated with 0 or 2,000 second-stage juveniles of M. incognita race 1. Endospores of P. penetrans were killed by AC but were only slightly affected by MW, whereas most fungal propagules were destroyed or inhibited in both treatments. Root galls, egg masses, and numbers of eggs were fewer on Coker 371 Gold in MW, DR, and untreated soil than in AC-treated soil. There were fewer egg masses than root galls on both tobacco cultivars in MW, DR, and untreated soil than in the AC treatment. Because both Meloidogyne spp. were suppressed in MW soil (with few fungi present) as well as in DR and untreated soil, the reduction in root galling, as well as numbers of egg masses and eggs appeared to have resulted from infection of both nematode species by P. penetrans.  相似文献   

13.
Information on the effect of bacteria-feeding nematodes on bacterial populations in the soil is sparse. We have isolated, cultured, and microscopically examined bacteria and nematodes coexisting within an agricultural soil and have studied their feeding relationship. The bacterium Pseudomonas corrugata isolate 2140R is a biocontrol agent against the pathogenic fungus Gaeumannomyces graminis var. tritici. The nematode Acrobeloides nanus is a cosmopolitan, bacteria-feeding organism widespread in agricultural and arid soils throughout Australia. Using light and electron microscopy, we observed the ingestion and breakdown of P. corrugata in the pharynx of A. nanus and bacterial passage through the nematode intestine as well as the accumulation of fluorescent compounds from ingested and broken P. fluorescens in the lumen of the nematode''s intestine. We also observed A. nanus feeding, growing, and reproducing on the Gram-positive bacterium Clavibacter toxicus, the causative agent of the disease annual ryegrass toxicity, and detected crushed bacteria in the nematode''s intestine.  相似文献   

14.
A spore assay was developed to measure the relative density of spores of the nematophagous fungus Hirsutella rhossiliensis in soil. Orchard soil containing H. rhossiliensis-parasitized Criconemella xenoplax was placed in vials and incubated for 0-120 days before the addition of probe nematodes, Heterorhabditis heliothidis juveniles. After 18 hours, H. heliothidis were extracted from the soil and examined for adhering spores of H. rhossiliensis. No spores were detected when H. heliothidis were added to freshly mixed soil, but the percentage of H. heliothidis with spores increased rapidly if soil was incubated undisturbed. Because mixing soil detaches spores from phialides, the results indicate that spores must be attached to phialides to adhere to nematodes. The spore assay was compared with a plate assay that measures the population density of H. rhossiliensis-parasitized C. xenoplax. Results from the two assays were highly correlated, suggesting that spores occur in three phases: reserves in nematodes that may be converted into spores; spores on phialides and therefore capable of adhering to nematodes; and spores detached from phialides and thus incapable of adhering to nematodes.  相似文献   

15.
The fungus Gnomonia comari, causal agent of strawberry leaf blotch, was inoculated at the crown of young axenized strawberry plants growing in sterilized sand. Only the roots were colonized, and the infection was symptomless. When the fungus colonized the roots in the presence of the root lesion nematode Pratylenchus penetrans, the plants were extremely stunted and their root system was necrotic. Fungal conidiospores were found attached to the cuticle of nematodes extracted from soil inoculated with the two pathogens. These findings indicate that P. penetrans could transport conidiospores through soil.  相似文献   

16.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

17.
The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol of nematodes.  相似文献   

18.
To isolate potential insect biocontrol agents, entomogenous nematodes were surveyed in Tennessee plant nurseries in 1991. Soil samples from 113 nursery sites were baited with greater wax moth (Galleria mellonella) larvae, house cricket (Acheta domesticus) adults, lesser mealworm (Alphitobius diaperings) adults, and house fly (Musca domestica) larvae. Heterorhabditis bacteriophora and Steinernema carpocapsae were each recovered from 17 soil samples. Heterorhabditis bacteriophora was more common in habitats with crape myrtle (Lagerstroemia indica) and Chinese juniper (Juniperus chinensis) than other nursery plants, and S. carpocapsae was more frequently recovered from habitats with juniper and Southern magnolia (Magnolia grandiflora). Bulk density, electrical conductivity, organic matter, pH, temperature, and moisture content of the entomogenous-nematode positive soil samples were compared. Other nematode genera recovered with insect baits included Rhabditis sp., Pelodera sp., Cryptaphelenchoides sp., and Mesodiplogaster sp., which was recovered from a greater percentage of soil samples than the other five genera.  相似文献   

19.
Root and soil samples from commercial potato fields were assayed for nematodes in 1983 and 1984. Pratylenchus spp. population densities in Suffolk County, New York, were consistently, though not always statistically, higher in potato fields that had been planted to rye or wheat rather than potatoes during the previous growing season. Regardless of the previous crop, population densities in the two potato production areas in Suffolk County differed significantly: population densities on the south fork were 1.9-5.5 times higher than those on the north fork. Species prevalence differed significantly on the two forks but was not related to the previous year''s crop. P. penetrans and P. crenatus were found primarily on the north and south forks, respectively. Differences in species distribution were associated with differences in soil types. P. crenatus was usually found on loams and silt loams, but P. penetrans was found more frequently on sandy soils.  相似文献   

20.
Competition on soybean between Heterodera glycines (race 3) and Meloidogyne incognita or H. glycines and Pratylenchus penetrans were investigated in greenhouse experiments. Each pair of nematode species was mixed in 3-ml suspensions at ratios of 1,000:0, 750:250, 500:500, 250:750, and 0:1,000 second-stage juveniles or mixed stages for P. penetrans. Nematodes from a whole root system were counted and infection rates standardized per 1,000 nematodes (per replication) prior to testing the null hypothesis through a lack-of-fit F-test. Although the effect of increasing H. glycines proportions on the infection rate of M. incognita was generally adverse, the rate deviated significantly from a trend of linear decline at the 75% H. glycines level in one of two experiments. All lack-of-fit F-tests for the H. glycines and P. penetrans mix were significant, indicating that infection rates for both nematodes varied considerably across inocula. The infection rate of H. glycines decreased with increasing P. penetrans proportions. The rate of P. penetrans infection increased with increasing H. glycines proportions up to the 50% level, but declined at the 75% level. Competition had no effect on nematode development. The general adverse relationships between M. incognita and H. glycines and those between P. penetrans and H. glycines showed a linear trend. The relationship between H. glycines and P. penetrans indicates that the former may be competitive when present at higher proportions than the latter. In this study we have evaluated nematode competition under controlled conditions and provide results that can form a basis for understanding the physical and physiological trends of multiple nematode interactions. Methods critical to data analyses also are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号