首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meloidogyne chitwoodi developed and reproduced more rapidly than M. hapla in potato roots at 15, 20, or 25 C when both species of nematodes were inoculated simultaneously at 250 or 1,000 juveniles of each. At 30 C significantly more M. hapla than M. chitwoodi females were found at the lower inoculum level after 41 days. More M. chitwoodi than M. hapla juveniles were extracted from soil at 15, 20, and 25 C, but only at the lower inoculum level at 30 C. Potato was considered a more suitable host for M. chitwoodi than M. hapla because of M. chitwoodi''s greater reproduction at 15, 20, and 25 C. Corn and wheat cultivars tested supported M. chitwoodi reproduction at temperatures of 10, 15, 20, and 25 C, but fewest eggs were produced on these plants at 20 C. Temperatures of 10 to 25 C had little influence on the low reproduction of M. chitwoodi on four alfalfa cultivars. M. chitwoodi reproduced on the alfalfa entry Mn PL9HF.  相似文献   

2.
At 20 C the duration of the embryogenic development of Meloiclogyne chitwoodi and M. hapla was about 20 days. At 10 C the embryogenic development was 82-84 days for M. chitwoodi and 95-97 days for M. hapla. The effect of distilled water and root leachates of potato cv. Russet Burbank, tomato cv. Columbian, and wheat cv. Hyslop on the hatching of eggs of the two root-knot nematode species was investigated at 4, 7, 10, 15, 20, and 25 C (± 1 C). Cumulative egg taatch was no greater in root leachates titan in distilled water, but temperature did significantly affect egg hatch (P = 0.05). Less than 1% of the eggs of both nematode species hatched at 4 C. The percent cumulative hatch at 10 C was significantly less (P = 0.05) than at higher temperatures for both nematodes and significantly more (P = 0.05) M. chitwoodi eggs hatched than did M. hapla eggs. At 15 G the percent cumulative hatch of both species was significantly lower (P = 0.05) than that at 20 and 25 C. The percent cumulative egg hatch of two species did not differ at 25 C, but was higher (P = 0.05) at 25 C than at 20 C. At 7 C the emergence of M. chitwoodi juveniles was about seven times (P = 0.01) greater than that of M. hapla in distilled water.  相似文献   

3.
Metham sodium applied in October through center pivot irrigation systems was evaluated for control of Meloidogyne hapla at 374, 468, and 701 liters/ha and for control of M. chitwoodi at 468 liters/ha on potato. Metham sodium at the high rates effectively controlled M. hapla. No females were detected in the tubers at the high rates of nematicide application, whereas a mean of 19 and 69% of the tubers were infected at the low rate and in the nontreated controls, respectively. In the M. chitwoodi trial only 1.5% of the tubers in the treated plots were infected compared with 82% in the nontreated plots. Metham sodium effectively controlled M. chitwoodi to soil depths of 30, 61, and 91 cm.  相似文献   

4.
From September 1980 to June 1981, a survey was conducted in the major potato growing regions of northern California, Idaho, Nevada, Oregon. and Washington to determine the distribution of Meloidogyne chitwoodi and other Meloidogyne spp. Meloidogyne chitwoodi and M. hapla were the only root-knot nematode species detected parasitizing potato in all the states surveyed. Meloidogyne chitwoodi occurred alone in 83% of the samples and M. hapla in 11%, with 6% of all samples containing both species. The greater incidence of M. chitwoodi, as compared to M. hapla, may be due to the cool growing season encountered in 1980 (which favored M. chitwoodi but not M. hapla) and to the increased acreage of small grains (which are good hosts for M. chitwoodi but not M. hapla) planted in rotation with potato. Differentiation between these two species can be determined by a differential host test, perineal patterns of mature females, and shape of the tail tip amt of the tail hypodermal terminus of L₂ juveniles.  相似文献   

5.
Second-stage juveniles (J2) of races 1 and 2 of Meloidogyne chiiwoodi and M. hapla readily penetrated roots of Thor alfalfa and Columbian tomato seedlings; however, few individuals of M. chitwoodi race 1 were able to establish feeding sites and mature on alfalfa. Histopathological studies indicate that J2 of race 1 either failed to initiate feeding sites or they caused cell enlargement without typical cell wall thickening. The protoplasm of these cells coagulated, and juveniles of race 1 did not develop beyond the swollen J2 stage. A few females of race 1 fed on small giant cells and deposited a few eggs at least 20 and 30 days later than M. chitwoodi race 2 and M. hapla, respectively. Failure of race 1 to establish feeding sites was related to egression of J2 from the roots. The M. chitwoodi race 1 J2 egression from alfalfa roots was higher than egression of race 2 and M. hapla. Egression of J2 of M. chitwoodi races 1 and 2 from tomato roots was similar and higher than that of M. hapla. Thus egression plays an important role in the host-parasite relationship of M. chitwoodi and alfalfa.  相似文献   

6.
Meloidogyne hapla reproduced and suppressed growth (P < 0.05) of susceptible Lahontan and Moapa alfalfa at 15, 20, and 25 C. At 30 C, resistant Nevada Syn XX lost resistance to M. hapla. M. hapla invaded and reproduced on Rhizobium meliloti nodules of Lahontan and Moapa, inducing giant cell formation and structural disorder of vascular bundles of nodules without disrupting bacteroids. At 15, 20, and 25 C a M. chitwoodi population from Utah reproduced on Lahontan, Moapa, and Nevada Syn XX alfalfa, suppressing growth (P < 0.05). Final densities of the Utah M. chitwoodi population were greater (P < 0.05) than those of Idaho and Washington State populations on Lahontan at 15 and 25 C and on Nevada Syn XX at 15 C, but were less consistent and smaller (P < 0.05) than those of M. hapla on Lahontan and Moapa at 20 and 25 C. Inconsistent reproduction of the Utah M. chitwoodi population on alfalfa suggests the possible existence of nematode strains revealed by variability in alfalfa resistance. No reproduction or inconsistent final nematode population densities with no damage were observed on Lahontan, Moapa, and Nevada Syn XX plants grown in soil infested with Idaho and Washington State M. chitwoodi populations.  相似文献   

7.
Migratory ability of second-stage juveniles (J2) of two Meloidogyne chitwoodi races and a M. hapla population were compared in soil-filled columns at 12, 18, and 24 C. J2 of all populations migrated farthest at 18 C and least at 12 C. Nematode survival was significantly reduced (P = 0.05) at 24 C.M. chitwoodi J2 migrated further and in greater numbers than M. hapla J2 at all temperatures. A comparison with and without a host plant demonstrated no preferential migration toward the plant. Water percolation through the migration columns stimulated upward migration.  相似文献   

8.
Most of the 15 carrot cultivars tested were moderate to good hosts to Meloidogyne chitwoodi race 1, whereas all except Orlando Gold were nonhosts or poor hosts for M. chitwoodi race 2. All carrot cultivars were good hosts for M. hapla. The plant weights of the carrot cultivars Red Cored Chantenay and Orlando Gold infected with either race of M. chitwoodi were significantly less than uninoculated checks in pots. Under field microplot conditions, however, detrimental effects on quality were rarely observed. M. hapla was pathogenic to both cultivars in the greenhouse and the field. The tolerance level of Orlando Gold to M. hapla was lower than Red Cored Chantenay.  相似文献   

9.
Responses of egg masses, free eggs, and second-stage juveniles (J2) ofMeloidogyne hapla and M. chitwoodi to ethoprop were evaluated. The results indicated that J2 were the most sensitive, followed by free eggs and egg masses. In general, M. chitwoodi was more susceptible to ethoprop than M. hapla. Ethoprop at 7.2 μg a.i./g soil protected tomato roots from upward migrating M. chitwoodi for 5 weeks. The zone of protection was extended to 10 and 20 cm below the root zone when 3.6 and 7.2 cm water were applied over 8 days. Ethoprop at 1.8, 3.6, and 7.2 μg a.i./g soil degraded faster and killed fewer M. chitwoodi J2 in potato field soil previously exposed to ethoprop than in unexposed soil or sterilized exposed soil. The enhanced biodegradation property of the exposed soil lasted 17 months after the last application of ethoprop. The limited downward movement of ethoprop in the soil, migration of M. chitwoodi J2 into the treated zone, presence of resistant life stage(s) at the time of application, and loss of efficacy due to enhanced biodegradation may have a significant effect on the performance of ethoprop.  相似文献   

10.
Numbers ofDitylenchus dipsaci or Meloidogyne hapla invading Ranger alfalfa, Tender crop bean, Stone Improved tomato, AH-14 sugarbeet, Yellow sweet clover, and Wasatch wheat from single inoculations were not significantly different from numbers by invasion of combined inoculations. D. dipsaci was recovered only from shoot and M. hapla only from root tissue. Combined inoculations did not affect reproduction of either D. dipsaci or M. hapla. D. dipsaci suppressed shoot growth of all species at 15-30 C, and M. hapla suppressed shoot growth of tomato, sugarbeet, and sweet clover at 20, 25, and 30 C. There was a positive correlation (P < 0.05) between shoot and root growth suppression by D. dipsaci on all cultivars except wheat at 20 C and tomato at 30 C. M. hapla suppressed (P < 0.05) root growth of sugarbeet at 20-50 C and wheat at 30 C. Growth suppression was synergistic in combined inoculations of sweet clover shoot growth at 15 C and root growth at 20-30 C, wheat root growth at 15 and 20 C, and tomato root growth at 15-30 C (P < 0.05) D. dipsaci invasions caused mortality of alfalfa and sweet clover at 15-30 C and sugarbeet at 20-30 C. Mortality rates of alfalfa and sweet clover increased synergistically (P < 0.05) from combined inoculations.  相似文献   

11.
The effect of the Mi gene on the reproductive factor of Meloidogyne chitwoodi and M. hapla, major nematode pests of potato, was measured on nearly isogenic tomato lines differing in presence or absence of the Mi gene. The Mi allele controlled resistance to reproduction of race 1 of M. chitwoodi and to one of two isolates of race 2. No resistance to race 3 of M. chitwoodi or to M. hapla was found. Variability in response to isolates of race 2 may reflect diversity of virulence genotypes heretofore undetected. Resistance to race 1 of M. chitwoodi could be useful in potato if the Mi gene were functional following transferral by gene insertion technology into potato. Since the Mi gene is not superior to RMc₁ derived from Solarium bulbocastanum, the transferral by protoplast fusion appears to offer no advantage.  相似文献   

12.
Meloidogyne chitwoodi n. sp. is described and illustrated from potato (Solanum tuberosum) originally collected from Quincy, Washington, USA. This new species resembles M. hapla, but its perineal pattern is basically round to oval with distinctive and broken, curled, or twisted striae around and above the anal area. The vulva is in a sunken area devoid of striae. Vesicles or vesicle-like structures are present in the median bulb of females. The larva tail, being short and blunt with a hyaline tail terminal having little or no taper to its rounded terminus, is distinctively different from M. hapla. SEM observations revealed the nature of the perineal pattern and details of the head of larvae and males, and showed the spicules to have dentate tips ventrally. Hosts for M. chitwoodi n. sp. include potato, tomato, corn, and wheat but not strawberry, pepper, or peanut. The latter three crops are excellent hosts for M. hapla. The known distribntion of this new root-knot species presently involves certain areas of Idaho, Washington, and Oregon. The common name "Columbia root-knot nematode" is proposed for M. chitwoodi n. sp.  相似文献   

13.
The interaction between Pratylenchus neglectus (Pn) and Meloidogyne chitwoodi (Mc) was investigated at soil temperatures of 15, 20, and 25 C on barley and potato. Maximum numbers of Pn and Mc penetrated barley roots at 20 C, whereas a minimum number penetrated at 15 C. Pratylenchus neglectus restricted root penetration by Mc over time and vice-versa. Population densities of each species increased with increasing temperature. Concomitant inoculation of the two species resulted in lower numbers of Pn at 15 and 25 C in both barley and potato, whereas the numbers of Mc were lower at 15 C in barley and at 25 C in potato. Root weights of potato and barley at 15 and 20 C, respectively, were lowered by the presence of both nematodes singly or concomitantly. At 25 C, barley plants inoculated with Mc alone had lower shoot weight than uninoculated controls, but the damage was restricted when Pn also was present. The two species interact competitively, and the outcome varies with soil temperature and host plant. Pn has the potential to suppress Mc population levels and reduce the damage it causes to potato and barley.  相似文献   

14.
Meloidogyne chitwoodi race 1 reproduced on Piper sudangrass (Sorghum bicolor (L.) Moench), 332 (sudangrass hybrid), and P855F and P877F (sorghum-sudangrass hybrids), but failed to reproduce efficiently on Trudan 8, Trudex 9 (sudangrass hybrids), and Sordan 79, SS-222, and Bravo II (sorghum-sudangrass hybrids). Meloidogyne chitwoodi race 2 behaved similarly and reproduced more efficiently on Piper, P855F, and P877F than on Trudan 8, Trudex 9, or Sordan 79. The mean reproductive factor for M. chitwoodi races on the poorer hosts ranged from <0.1 to 0.9 under greenhouse and field conditions. Meloidogyne hapla failed to reproduce on any of the cultivars tested. In the laboratory, leaves of each cultivar chopped and incorporated as green manure reduced the M. chitwoodi population in infested soil more than unamended or wheat green manure treatments. Trudan 8, although limited to the zone of incorporation, protected this zone from colonization of upward migrating second stage juveniles (J2) for up to 6 weeks. Leaves of Trudan 8 but not roots were effective against M. chitwoodi, and J2 appeared to be more sensitive than egg masses. Trudan 8 and Sordan 79 as green manure reduced M. chitwoodi in bucket microplots under field conditions.  相似文献   

15.
In the Pacific Northwest, alfalfa (Medicago sativa) is host to two species of root-knot nematodes, including race 2 of the Columbia root-knot nematode (Meloidogyne chitwoodi) and the northern root-knot nematode (Meloidogyne hapla). In addition to the damage caused to alfalfa itself by M. hapla, alfalfa’s host status to both species leaves large numbers of nematodes available to damage rotation crops, of which potato is the most important. A nematode-resistant alfalfa germplasm release, W12SR2W1, was challenged with both nematode species, to determine the correlation, if any, of resistance to nematode reproduction. Thirty genotypes were screened in replicated tests with M. chitwoodi race 2 or M. hapla, and the reproductive factor (RF) was calculated. The distribution of natural log-transformed RF values was skewed for both nematode species, but more particularly for M. chitwoodi race 2, where more than half the genotypes screened were non-hosts. Approximately 30 percent of genotypes were non-hosts or very poor hosts of M. hapla, but RF values for M. hapla on susceptible genotypes were generally much higher than RF values for genotypes susceptible to M. chitwoodi race 2. The Spearman rank correlation was positive (0.52) and significant (p-value = 0.003), indicating there is some relationship between resistance to these two species of root-knot nematode in alfalfa. However the relationship is not strong enough to suggest genetic loci for resistance are identical, or closely linked. Breeding for resistance or immunity will require screening with each species separately, or with different DNA markers if marker-assisted breeding is pursued. A number of genotypes were identified which are non-hosts to both species. These plants will be intercrossed to develop a non-host germplasm.  相似文献   

16.
Postinfection development of Meloidogyne chitwoodi from second-stage juveniles (J2) to mature females and egg deposition on ''Nugaines'' winter wheat required 105, 51, 36, and 21 days at 10, 15, 20, and 25 C. At 25 C, the J2 induced cavities and hyperplasia in the cortex and apical meristem of root tips with hypertrophy of cortical and apical meristem cell nuclei, 2 and 5 days after inoculation. Giant cells induced by late J2 were observed in the stele 10 days after inoculation. Clusters of egg-laying females were common on wheat root galls 25 days after inoculation. Juveniles penetrated wheat roots at 4 C and above, but not at 2 C, when inoculum was obtained from cultures grown at 20 C, but no penetration occurred at 4 C when inoculum was stored for 12 hours at 4 C before inoculation. In northern Utah, J2 penetrated Nugaines wheat roots in the field in mid-May, about 5 months after seedling emergence. M. chitwoodi eggs were first observed on wheat roots in mid-July when plants were in blossom. Only 40% of overwintered M. chitwoodi eggs hatched at 25 C.  相似文献   

17.
Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of ''Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria.  相似文献   

18.
The objective of this experiment was to determine the effects of fenamiphos 15G and short-cycle potato (PO)-sweet potato (SP) grown continuously and in rotation with peanut (PE)-grain sorghum (GS) on yield, crop quality, and mixed nematode population densities of Meloidogyne arenaria, M. hapla, M. incognita, and Mesocriconema ornatum. Greater root-gall indices and damage by M. hapla and M. incognita occurred on potato than other crops. Most crop yields were higher and root-gall indices lower from fenamiphos-treated plots than untreated plots. The total yield of potato in the PO-SP and PO-SP-PE-GS sequences increased from 1983 to 1985 in plots infested with M. hapla or M. arenaria and M. incognita in combination and decreased in 1986 to 1987 when root-knot nematode populations shifted to M. incognita. The total yields of sweet potato in the PO-SP-PE-GS sequence were similar in 1983 and 1985, and declined each year in the PO-SP sequence as a consequence of M. incognita population density increase in the soil. Yield of peanut from soil infested with M. hapla increased 82% in fenamiphos-treated plots compared to untreated plots. Fenamiphos treatment increased yield of grain sorghum from 5% to 45% over untreated controls. The declining yields of potato and sweet potato observed with both the PO-SP and PO-SP-PE-GS sequences indicate that these crop systems should not be used longer than 3 years in soil infested with M. incognita, M. arenaria, or M. hapla. Under these conditions, these two cropping systems promote a population shift in favor of M. incognita, which is more damaging to potato and sweet potato than M. arenaria and M. hapla.  相似文献   

19.
The reproductive factor (R = final egg density at 55 days ÷ 5,000, initial egg density) of Meloidogyne chitwoodi race 2 (alfalfa race) on 46 crop cultivars ranged from 0 to 130. The reproductive efficiency of M. chitwoodi race 1 (non-alfalfa race) and M. chitwoodi race 2 was compared on selected crop cultivars. The basic difference between the two races lay in their differential reproduction on Thor alfalfa and Red Cored Chantenay carrot. M. chitwoodi race 2 reproduced on alfalfa but not on carrot. Conversely, alfalfa was a poor host and carrots were suitable for M. chitwoodi race 1. Based on host responses to M. chitwoodi races and M. hapla, a new differential host test was proposed to distinguish the common root-knot nematode species of the Pacific Northwest.  相似文献   

20.
Meloidogyne chitwoodi races 1 and 2 and M. hapla reproduced on 12 cultivars of Brassica napus and two cultivars of B. campestris. The mean reproductive factors (Rf), Rf = Pf at 55 days ÷ 5,000, for the three nematodes were 8.3, 2.2, and 14.3, respectively. All three nematodes reproduced more efficiently (P < 0.05) on B. campestris than on B. napus. Amending M. chitwoodi-infested soil in plastic bags with chopped shoots of Jupiter rapeseed reduced the nematode population more (P < 0.05) than amendment with wheat shoots. Incorporating Jupiter shoots to soil heavily infested with M. chitwoodi in microplots reduced the nematode population more (P < 0.05) than fallow or corn shoot treatments. The greatest reduction in nematode population density was attained by cropping rapeseed for 2 months and incorporating it into the soil as a green manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号