首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell membranes show complex behavior, in part because of the large number of different components that interact with each other in different ways. One aspect of this complex behavior is lateral organization of components on a range of spatial scales. We found that lipid-only mixtures can model the range of size scales, from approximately 2 nm up to microns. Furthermore, the size of compositional heterogeneities can be controlled entirely by lipid composition for mixtures such as 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol or sphingomyelin (SM)/DOPC/POPC/cholesterol. In one region of special interest, because of its connection to cell membrane rafts, nanometer-scale domains of liquid-disordered phase and liquid-ordered phase coexist over a wide range of compositions.  相似文献   

2.
Abstract

A late-time growth law of domains undergoing vapor-liquid phase separation is studied for two- and three-dimensional Lennard-Jones fluids by molecular dynamics simulations. The characteristic domain size shows a power law growth in a late stage with the growth exponent of ½ for both two- and three-dimensional fluids. This study concerns also the relationship between statistical properties of domain patterns and temperatures. The asymptotic form factor of each system is obtained using scaling and the asymptotic tail of the form factor is analyzed. This tail is related to the domain-wall structure. At low system temperatures, the form factor satisfies Porod's law; the asymptotic tail decreases as S(k) ~ k ?(D+ 1) where D is the system dimensionality. However, it is found that the decay of the asymptotic tail becomes slower than that of the Porod tail at higher temperatures in both two- and three-dimensional systems. This indicates that the dimension of the domain wall is fractal and increases with increasing system temperature.  相似文献   

3.
4.
Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.  相似文献   

5.
6.
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.  相似文献   

7.
8.
第三类小RNA和生殖细胞发育   总被引:1,自引:0,他引:1  
果蝇中重复相关小干扰RNA(rasiRNA)和哺乳动物中Piwi相互作用RNA(piRNA)是最近发现的大小在30个核苷酸左右的小RNA,它们与已经发现的22个核苷酸左右的短干扰RNA(siRNA)和微小RNA(miRNA)有明显区别,因此命名为第三类小RNA。第三类小RNA可以与Piwi形成基因沉默复合体,并可能采取与经典RNA干扰不同的方式而影响特定基因的表达。目前这类小RNA主要在生殖细胞及干细胞中发现,尤其对生殖细胞中生理功能的全面研究,可能对RNA干扰现象有一个更为全面的理解。  相似文献   

9.
早期胚胎发育母源基因的表达调控   总被引:5,自引:0,他引:5  
精卵细胞是自身细胞系谱发生的产物 ,具有与双亲生物环境相互作用发育的先天性遗传。受精是新个体发育的起始点 ,是基因表达在胚胎发育过程中的选择性和时间上的规律顺序[1,2 ] 。基因组内各个基因表达的选择性和程度 ,无论是由单基因的突变引起或是多基因的复杂影响引起 ,都随时间、位置和环境条件的不同而发生改变[3 ] 。基因表达的变化是控制个体发生的细调节中心 ,决定着所有的生命过程。1 .早期胚胎发育的物质基础伴随卵母细胞生长的是核糖体和信使RNAs转录活化 ,Poly(A)mRNA的合成约占总RNA的 2 0 % ,小鼠大约在排卵…  相似文献   

10.
11.
CLK-2/TEL2 is essential for viability from yeasts to vertebrates, but its essential functions remain ill defined. CLK-2/TEL2 was initially implicated in telomere length regulation in budding yeast, but work in Caenorhabditis elegans has uncovered a function in DNA damage response signalling. Subsequently, DNA damage signalling defects associated with CLK-2/TEL2 have been confirmed in yeast and human cells. The CLK-2/TEL2 interaction with the ATM and ATR DNA damage sensor kinases and its requirement for their stability led to the proposal that CLK-2/TEL2 mutants might phenocopy ATM and/or ATR depletion. We use C. elegans to dissect developmental and cell cycle related roles of CLK-2. Temperature sensitive (ts) clk-2 mutants accumulate genomic instability and show a delay of embryonic cell cycle timing. This delay partially depends on the worm p53 homolog CEP-1 and is rescued by co-depletion of the DNA replication checkpoint proteins ATL-1 (C. elegans ATR) and CHK-1. In addition, clk-2 ts mutants show a spindle orientation defect in the eight cell stages that lead to major cell fate transitions. clk-2 deletion worms progress through embryogenesis and larval development by maternal rescue but become sterile and halt germ cell cycle progression. Unlike ATL-1 depleted germ cells, clk-2–null germ cells do not accumulate DNA double-strand breaks. Rather, clk-2 mutant germ cells arrest with duplicated centrosomes but without mitotic spindles in an early prophase like stage. This germ cell cycle arrest does not depend on cep-1, the DNA replication, or the spindle checkpoint. Our analysis shows that CLK-2 depletion does not phenocopy PIKK kinase depletion. Rather, we implicate CLK-2 in multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development.  相似文献   

12.
Cells compartmentalize biochemical reactions using organelles, which can be membrane enclosed or built entirely of proteins and ribonucleic acids. Recent studies indicate that many organelles that lack membranes have liquid-like properties, including the ability to flow, fuse, and undergo rapid internal rearrangement. The assembly of these “biomolecular condensates” has been described as liquid–liquid phase separation, whereby their constituent components demix from the cytoplasm, similar to water separating from oil. Other studies suggest that protein phase separation followed by maturation, where intramolecular connections strengthen over time, can lead to gel- or glass-like states. This review discusses how the principles of phase separation might help to understand the assembly and behavior of organelles that operate in mitosis, when the cell assembles the mitotic spindle to segregate chromosomes. Special attention is given to the mitotic pericentriolar material of centrosomes and the spindle matrix.  相似文献   

13.
14.
Li  H.  Ju  Y.  Liu  W. W.  Ma  Y. Y.  Ye  H.  Li  N. 《Molecular Biology》2023,57(1):127-135
  相似文献   

15.
16.
细胞中存在种类繁多的无膜细胞器,在感知环境信号,基因表达调控,RNA加工等过程中发挥了重要的作用,而生物大分子相分离被证明是无膜细胞器形成的主要方式。文章介绍了生物大分子相分离的概念与特征,总结了有关相分离在植物对环境信号响应中的研究进展,并对相分离在植物中的生物学功能进行了分类,以期解析相分离在植物生长发育和逆境适应中的作用机理,揭示植物无膜细胞器的本质与功能。  相似文献   

17.
PLZF与哺乳动物雄性生殖干细胞的发育分化   总被引:1,自引:0,他引:1  
早幼粒细胞白血病锌指蛋白(promyelocytic leukemia zinc finger,PLZF),也被称为ZBTB16(zinc finger and BTB domain containing 16,ZBTB16)或锌指蛋白145(zinc finger protein 145,ZFP145),是我国学者发现与人类疾病相关的蛋白质.人类PLZF的是由673个氨基酸残基组成的转录抑制因子,属于蛋白质超家族. 该超家族以N端的BTB/POZ(bric-à-brac, tramtrack, brad complex(BTB)/poxvirus zinc finger (POZ) domain)结构为特征. PLZF蛋白的BTB/POZ结构与个体发育、胚胎发生、染色体的重构等事件相关.近年发现,PLZF在哺乳动物雄性生殖干细胞(male germline stem cells,mGSCs)发育分化过程中也发挥重要作用.探讨PLZF的生物学功能和作用机制,将有助于理解其在mGSCs发育过程中的重要作用. 本文就PLZF在维持mGSCs自我更新和在发育分化调控中的作用给予综述.  相似文献   

18.
《Developmental cell》2020,52(6):764-778.e4
  1. Download : Download high-res image (182KB)
  2. Download : Download full-size image
  相似文献   

19.
Germline stem cells   总被引:1,自引:0,他引:1  
Sperm and egg production requires a robust stem cell system that balances self-renewal with differentiation. Self-renewal at the expense of differentiation can cause tumorigenesis, whereas differentiation at the expense of self-renewal can cause germ cell depletion and infertility. In most organisms, and sometimes in both sexes, germline stem cells (GSCs) often reside in a defined anatomical niche. Factors within the niche regulate a balance between GSC self-renewal and differentiation. Asymmetric division of the germline stem cell to form daughter cells with alternative fates is common. The exception to both these tendencies is the mammalian testis where there does not appear to be an obvious anatomical niche and where GSC homeostasis is likely accomplished by a stochastic balance of self-renewal and differentiation and not by regulated asymmetric cell division. Despite these apparent differences, GSCs in all organisms share many common mechanisms, although not necessarily molecules, to guarantee survival of the germline.  相似文献   

20.
The nystagmus in patients with vestibular disorders often has an eye position dependency, called Alexander’s law, where the slow phase velocity is higher with gaze in the fast phase direction compared with gaze in the slow phase direction. Alexander’s law has been hypothesized to arise either due to adaptive changes in the velocity-to-position neural integrator, or as a consequence of processing of the vestibular-ocular reflex. We tested whether Alexander’s law arises only as a consequence of non-physiologic vestibular stimulation. We measured the time course of the development of Alexander’s law in healthy humans with nystagmus caused by three types of caloric vestibular stimulation: cold (unilateral inhibition), warm (unilateral excitation), and simultaneous bilateral bithermal (one side cold, the other warm) stimulation, mimicking the normal push-pull pattern of vestibular stimulation. Alexander’s law, measured as a negative slope of the velocity versus position curve, was observed in all conditions. A reversed pattern of eye position dependency (positive slope) was found <10% of the time. The slope often changed with nystagmus velocity (cross-correlation of nystagmus speed and slope was significant in 50% of cases), and the average lag of the slope with the speed was not significantly different from zero. Our results do not support the hypothesis that Alexander’s law can only be observed with non-physiologic vestibular stimulation. Further, the rapid development of Alexander’s law, while possible for an adaptive mechanism, is nonetheless quite fast compared to most other ocular motor adaptations. These results suggest that Alexander’s law may not be a consequence of a true adaptive mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号