首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greenhouse and growth chamber studies were established to determine if there are pathological and physiological differences among Meloidogyne hapla populations from California (CA), Nevada (NV), Utah (UT), and Wyoming (WY) on alfalfa cultivars classified as resistant or susceptible to root-knot nematodes. In the greenhouse, plant survival was not consistent with resistance classifications. While all highly resistant Nevada Synthetic germplasm (Nev Syn XX) plants survived inoculation with all nematode populations, two cultivars classified as moderately resistant (''Chief'' and ''Kingstar'') survived (P ≤ 0.05) inoculation with M. hapla populations better than did ''Lobo'' cultivar, which is classified as resistant. Plant growth of Nev Syn XX was suppressed by only the CA population, whereas growth of the other alfalfa cultivars classified as M. hapla resistant or moderately resistant was suppressed by all nematode populations. Excluding Nev Syn XX, all alfalfa cultivars were severely galled and susceptible to all nematode populations. Except for Nev Syn XX, reproduction did not differ among the nematode populations on alfalfa cultivars. Nev Syn XX was not as favorable a host to CA as were the other cultivars; but, it was a good host (reproductive factor [Rf] = 37). Temperature affected plant resistance; the UT and WY populations were more pathogenic at 15-25 C, and CA was more pathogenic at 30 C. Nev Syn XX was susceptible to all nematode populations, except for CA, at only 30 C, and all other alfalfa cultivars were susceptible to all nematode populations at all temperatures.  相似文献   

2.
Studies were conducted to examine under differing temperatures (12, 16, 20, 24, 28, and 32 C) the penetration anti development of Meloidogyne hapla in resistant lines ''298'' and ''Nev. Syn XX'', and susceptible ''Lahontan'' and ''Ranger'' hardy-type alfalfas. The results indicated that resistance to M. hapla was similar to that previously described for M. incognita in nonhardy alfalfa. Although initial penetration in resistant seedlings was similar to that of susceptible seedlings, nematode larvae failed to establish and develop in root tissues and nematode numbers subsequently declined. In susceptible seedlings, nematode development proceeded rapidly, and egg production began after 5 weeks. Temperature had little influence on the nematode development except to slow the response at the lower temperatures. Other studies were conducted to verify a previously reported immune (no penetration) reaction to M. hapla by the ''Vernal'' selection ''M-4''. When compared to the resistant (penetration without nematode development) Vernal selection ''M-9'' under differing temperatures (20, 24, 28, and 32 C), each selection was equally penetrated by M. hapla but at a lower level than in susceptible Ranger cuttings. Generally, no root galling was observed in either M-4 or M-9; however, very slight galling was found 35 days after inoculation on about 50% of these cuttings when grown at 32 C.  相似文献   

3.
Simultaneous inoculations of alfalfa with Meloidogyne hapla larvae and Ditylenchus dipsaci at 16, 20, 24, and 28 C did not depress penetration of either nematode in ''Nev Syn XX'' -a selection resistant to M. hapla and D. dipsaci, ''Vernal 298'' -a selection resistant to M. hapla and susceptible to D. dipsaci, ''Lahontan'' -a cultivar resistant to D. dipsaci and susceptible to M. hapla, and ''Ranger'' -a cultivar susceptible to both M. hapla and D, dipsaci. Infection with D. dipsaci depressed growth of susceptible ''Vernal 298'' and ''Ranger'' at all soil temperatures, except for ''Vernal 298'' at 16 C. Infection with M. hapla alone did not depress growth of any of the alfalfas. A combination of M. hapla and D. dipsaci resulted in a synergistic weight depression on ''Ranger'' at all soil temperatures. Inoculation of the four alfalfas with D. dipsaci 2, 4, 6, and 8 wk before inoculation with M. hapla at 16, 20, 24, and 28 C did not influence the resistance or susceptibility of ''Nev Syn XX,'' ''Lahontan,'' or ''Ranger.'' However, galling of ''Vernal 298'' by M. hapla was affected by soil temperature, plant age, and inoculation with D. dipsaci.  相似文献   

4.
Pathogenicity of Meloidogyne hapla to lettuce was influenced by inoculum level, age of plant at inoculation and temperature. Top weight of ''Minetto'' lettuce was reduced 32% when 2-week-old lettuce plants were each inoculated with five egg masses. Higher inoculum levels did not further decrease top weight significantly. Inoculation at seeding reduced top growth more than inoculation of 1-, 2- or 3-week-old seedlings. M. hapla reduced growth more at the intermediate (21.1 C night and 26.7 C day), than at the low (15.5 C night and 21.1 C day) or high (26.7 C night and 32.2 C day), temperature regimes.  相似文献   

5.
Meloidogyne hapla reproduced and suppressed growth (P < 0.05) of susceptible Lahontan and Moapa alfalfa at 15, 20, and 25 C. At 30 C, resistant Nevada Syn XX lost resistance to M. hapla. M. hapla invaded and reproduced on Rhizobium meliloti nodules of Lahontan and Moapa, inducing giant cell formation and structural disorder of vascular bundles of nodules without disrupting bacteroids. At 15, 20, and 25 C a M. chitwoodi population from Utah reproduced on Lahontan, Moapa, and Nevada Syn XX alfalfa, suppressing growth (P < 0.05). Final densities of the Utah M. chitwoodi population were greater (P < 0.05) than those of Idaho and Washington State populations on Lahontan at 15 and 25 C and on Nevada Syn XX at 15 C, but were less consistent and smaller (P < 0.05) than those of M. hapla on Lahontan and Moapa at 20 and 25 C. Inconsistent reproduction of the Utah M. chitwoodi population on alfalfa suggests the possible existence of nematode strains revealed by variability in alfalfa resistance. No reproduction or inconsistent final nematode population densities with no damage were observed on Lahontan, Moapa, and Nevada Syn XX plants grown in soil infested with Idaho and Washington State M. chitwoodi populations.  相似文献   

6.
In a greenhouse pot experiment on the pathogenicity and interactions of Meloidogyne incognita, M. hapla and Pratylenchus brachyurus on four cultivars o f tobacco the cultivars ''Hicks'' and ''NC 2326'' were susceptible to each nematode and "NC 95'' and ''NC 2512'' resistant only to M. incognita.Mean heights of susceptible plants were depressed but fresh weight of tops did not differ significantly. Meloidogyne spp. increased fresh weight of susceptible (but not the resistant) roots.Reproduction of M. incognita was decreased in the presence of P. brachyurus in one case. M. hapla reproduction was less with either of the other nematodes in five out of eight cases. In 12 combinations involving P. brachyurus, reproduction of this species was depressed in seven, not affected in four and increased in one.Mechanisms involved in associative interactions were not identified but appeared to be indirect and to involve individual host-nematode responses.  相似文献   

7.
Increased culturing of a tomato population of Heterodera schachtii (UT1C) on tomato for 480 days (eight inoculation periods of 60 days each) significantly increased virulence to ''Stone Improved'' tomato. A synergistic relationship existed between Meloidogyne hapla and H. schaehtii on tomato. A combination of H. schachtii (UTIC) and M. hapla significantly reduced tomato root weights by 65, 64, and 61% below root weights of untreated controls, and single inoculations of M. hapla and H. schachtii, respectively. This corresponded to root reductions of 42, 44, and 46% from a combination of H. schachtii (UT1B) and M. hapla. Antagonism existed between H. schachtii and M. hapla with regard to infection courts and feeding sites. The root-knot galling index dropped from 6.0 with a single inoculation of M. hapla to 4.3 and 3.3 with combined inoculations of M. hapla plus UT1B and M. hapla plus UTIC cyst nematode populations. The pathological virulence of H. schachtii to sugarbeet was not lost by extended culturing on tomato; there were no differences in penetration, maturation, and reproduction between sugarbeet populations continually cultured on sugarbeet and the population continually cultured on tomato.  相似文献   

8.
Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of ''Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria.  相似文献   

9.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

10.
Three described species of root-knot nematode parasitize peanut (Arachis hypogaea): Meloidogyne arenaria race 1 (Ma), M. hapla (Mh), and M. javanica (Mj). Peanut cultivars with broad resistance to Meloidogyne spp. will be useful regardless of the species present in the field. The objective of this study was to determine whether peanut genotypes with resistance to M. arenaria originating from three different breeding programs were also resistant to M. hapla and M. javanica. The experiment used a factorial arrangement (completely randomized) with peanut genotype and nematode population as the factors. The five peanut genotypes were ''COAN'' and AT 0812 (highly resistant to Ma), C209-6-13 (moderately resistant to Ma), and ''Southern Runner'' and ''Georgia Green'' (susceptible to Ma). The four nematode populations were two isolates of Ma (Gibbs and Gop) and one isolate each of Mh and Mj. On COAN or AT 0812, both Ma and Mj produced <10% of the eggs produced on Georgia Green. On the peanut genotype C209-6-13, Ma and Mj produced about 50% of the eggs produced on Georgia Green. None of the resistant genotypes exhibited a high level of resistance to Mh. The lack of resistance to Mh in any cultivars or advanced germplasm is a concern because the identity of a Meloidogyne sp. in a particular peanut field is generally not known. Breeding efforts should focus on moving genes for resistance to M. hapla into advanced peanut germplasm, and combining genes for resistance to the major Meloidogyne spp. in a single cultivar.  相似文献   

11.
Rates of reproduction of root-knot nematodes on corn varied with Meloidogyne species, with different populations of certain species, and with corn cultivars. M. arenaria, M. incognita and M. javanica reproduced at varying rates on all corn cultivars tested. None of the three selections of M. hapla reproduced on corn. Most of the Meloidogyne populations increased more rapidly on ''Coker'' and ''Pioneer'' hybrids than on ''McNair'' hybrids or on open-pollinated varieties or inbreds. Nematodes often reduced root growth, but the differences within given nematode-cultivar treatments were not usually significant. Root growth of ''Coker 911,'' which supported a high rate of reproduction, was affected less than ''Pioneer 309B'' which supported a low rate of nematode reproduction.  相似文献   

12.
Stands of several cultivars and experimental lines of sainfoin (Onobrychis viciifolia) were severely reduced (92% average loss) in a field naturally infested with Meloidogyne hapla. Stands of two alfalfa cultivars included in the test were unaffected. In studies conducted in the greenhouse with plants inoculated at the time of seeding, average mortality was 55% for sainfoin entries and 7% for Ladak alfalfa. Little mortality occurred when plants were inoculated after establishment. Three months after inoculation, all sainfoin entries were heavily galled (range of 3.3-3.7 on a scale of 1-4) while roots of Ladak were only slightly galled (rating of 1.6). Intermating of plants selected in the field plots for resistance to M. hapla showed a slight increase in resistance. Of the 147 plant introduction lines tested in the greenhouse, none were resistant to M. hapla.  相似文献   

13.
The objective of this experiment was to determine the effects of fenamiphos 15G and short-cycle potato (PO)-sweet potato (SP) grown continuously and in rotation with peanut (PE)-grain sorghum (GS) on yield, crop quality, and mixed nematode population densities of Meloidogyne arenaria, M. hapla, M. incognita, and Mesocriconema ornatum. Greater root-gall indices and damage by M. hapla and M. incognita occurred on potato than other crops. Most crop yields were higher and root-gall indices lower from fenamiphos-treated plots than untreated plots. The total yield of potato in the PO-SP and PO-SP-PE-GS sequences increased from 1983 to 1985 in plots infested with M. hapla or M. arenaria and M. incognita in combination and decreased in 1986 to 1987 when root-knot nematode populations shifted to M. incognita. The total yields of sweet potato in the PO-SP-PE-GS sequence were similar in 1983 and 1985, and declined each year in the PO-SP sequence as a consequence of M. incognita population density increase in the soil. Yield of peanut from soil infested with M. hapla increased 82% in fenamiphos-treated plots compared to untreated plots. Fenamiphos treatment increased yield of grain sorghum from 5% to 45% over untreated controls. The declining yields of potato and sweet potato observed with both the PO-SP and PO-SP-PE-GS sequences indicate that these crop systems should not be used longer than 3 years in soil infested with M. incognita, M. arenaria, or M. hapla. Under these conditions, these two cropping systems promote a population shift in favor of M. incognita, which is more damaging to potato and sweet potato than M. arenaria and M. hapla.  相似文献   

14.
Microplot and field experiments were conducted to determine relationships of population densities of Meloidogyne spp. to performance of flue-cured tobacco. A 3-yr microplot study of these interactions involved varying initial nematode numbers (Pi).and use of ethoprop to re-establish ranges of nematode densities. Field experiments included various nematicides at different locations. Regression analyses of microplot data from a loamy sand showed that cured-leaf yield losses on ''Coker 319'' for each 10-fold increase in Pi were as follows: M. javanica and M. arenaria—-13-19%; M. incognita—5-10%; M. hapla—3.4-5%; and 3% for M. incognita on resistant ''Speight G-28'' tobacco. A Pi of 750 eggs and larvae/500 cm³ of soil of all species except M. hapla caused a significant yield loss; only large numbers of M. hapla effected a loss. M. arenaria was the most tolerant species to ethoprop. Root-gall indices for microplot and most field-nematicide tests also were correlated negatively with yield. Relationships of Pi(s) and necrosis indices to yield were best characterized by linear regression models, whereas midseason numbers of eggs plus larvae (Pm) and sometimes gall indices vs. yield were better characterized by quadratic models. The relation of field Pm and yield was also adequately described by the Seinhorst model. Degrees of root galling, root necrosis, yield losses, and basic rates of reproduction on tobacco generally increased from M. hapla to M. incognita to M. arenaria to M. javanica.  相似文献   

15.
Legumes of the genera Astragalus (milkvetch), Coronilla (crownvetch), Lathyrus (pea vine), Lotus (birdsfoot trefoil), Medicago (alfalfa), Melilotus (clover), Trifolium (clover), and Vicia (common vetch) were inoculated with a population of Melaidogyne chitwoodi from Utah or with one of three M. hapla populations from California, Utah, and Wyoming.Thirty-nine percent to 86% of alfalfa (M. scutellata) and 10% to 55% of red clover (T. pratense) plants survived inoculation with the nematode populations at a greenhouse temperature of 24 ± 3°C. All plants of the other legume species survived all nematode populations, except 4% of the white clover (T. repens) plants inoculated with the California M. hapla population. Entries were usually more susceptible to the M. hapla populations than to M. chitwoodi. Galling of host roots differed between nematode populations and species. Root-galling indices (1 = none, 6 = severely galled) ranged from 1 on pea vine inoculated with the California population of M. hapla to 6 on yellow sweet clover inoculated with the Wyoming population of M. hapla. The nematode reproductive factor (Rf = final nematode population/initial nematode population) ranged from 0 for all nematode populations on pea vine to 35 for the Wyoming population of M. hapla on alfalfa (M. sativa).  相似文献   

16.
Gall size and rates of ethylene production by various hosts infected with Meloidogyne javanica and by excised tomato root cultures infected with M. javanica or M. hapla were measured. Infection with M. javanica increased the rate of ethylene production in dicotyledonous plants (cabbage, pea, carrot, cucumber, carnation, and tomato), but not in infected monocotyledonous plants (corn, wheat, and onion). Nematode infection induced large galls on roots of dicotyledonous, but not monocotyledonous, plants. Excised tomato roots in culture infected with M. javanica produced ethylene at high rates and formed large galls, whereas roots infected with M. hapla produced ethylene at low rates and induced smaller galls.  相似文献   

17.
In the Pacific Northwest, alfalfa (Medicago sativa) is host to two species of root-knot nematodes, including race 2 of the Columbia root-knot nematode (Meloidogyne chitwoodi) and the northern root-knot nematode (Meloidogyne hapla). In addition to the damage caused to alfalfa itself by M. hapla, alfalfa’s host status to both species leaves large numbers of nematodes available to damage rotation crops, of which potato is the most important. A nematode-resistant alfalfa germplasm release, W12SR2W1, was challenged with both nematode species, to determine the correlation, if any, of resistance to nematode reproduction. Thirty genotypes were screened in replicated tests with M. chitwoodi race 2 or M. hapla, and the reproductive factor (RF) was calculated. The distribution of natural log-transformed RF values was skewed for both nematode species, but more particularly for M. chitwoodi race 2, where more than half the genotypes screened were non-hosts. Approximately 30 percent of genotypes were non-hosts or very poor hosts of M. hapla, but RF values for M. hapla on susceptible genotypes were generally much higher than RF values for genotypes susceptible to M. chitwoodi race 2. The Spearman rank correlation was positive (0.52) and significant (p-value = 0.003), indicating there is some relationship between resistance to these two species of root-knot nematode in alfalfa. However the relationship is not strong enough to suggest genetic loci for resistance are identical, or closely linked. Breeding for resistance or immunity will require screening with each species separately, or with different DNA markers if marker-assisted breeding is pursued. A number of genotypes were identified which are non-hosts to both species. These plants will be intercrossed to develop a non-host germplasm.  相似文献   

18.
Self-thinning in alfalfa, a dynamic process involving the progressive elimination of the weakest plants, was enhanced by Meloidogyne hapla. Alfalfa stand densities decreased exponentially with time and were reduced 62% (P = 0.05) in the presence of M. hapla. As stand densities decreased over time, mean plant weights increased at a rate 2.59 times faster in the absence of M. hapla. In a stepwise multiple regression analysis, 65% of the total variation in yield could be explained by changes in stand density and 85% by average weight of individual stems. Alfalfa yields were suppressed (P = 0.05) by M. hapla, with suppression generally increasing with time and as the nematode population density increased. Yield suppression was attributable primarily to the decline in plant numbers and to suppression in individual plant weights.  相似文献   

19.
Lycopersicon glandulosum and L. peruvianum clones and L. esculentum cultivars ''VFN8'' (resistant) and ''Rutgers'' (susceptible) were tested for their resistance to Meloidogyne incognita (race l) at soil temperatures of 25 and 32 C. L. esculentum cv. VFN8 and L. peruvianum Acc. No. 128657, both of which possess the Mi gene, were resistant at 25 C but were susceptible at 32 C. L. glandulosum Acc. No. 126443 and L. peruvianum Acc. No. 270435, with combined resistance to M. hapla and M. incognita, and L. peruvianum Acc. Nos. 129152 and LA2157, with resistance to M. incognita, were highly resistant at both temperatures. In a second experiment three of these accessions under heat stress simulated by 32 C ambient and soil temperature retained a high level of resistance. Two clones of L. glandulosum Acc. No. 126440, with resistance to M. hapla, were moderately susceptible to M. incognita at 25 and highly susceptible at 32 C. M. incognita produced significantly (P = 0.01) more eggs on L. esculentum cv. Rutgers at 32 than at 25 C. This study supports the existence of genes other than the Mi gene that confer resistance to M. incognita and are functional at high soil temperatures.  相似文献   

20.
A polymerase chain reaction (PCR) method for discriminating Meloidogyne incognita, M. arenaria, M. javanica, M. hapla, and M. chitwoodi was developed. Single juveniles were ruptured in a drop of water and added directly to a PCR reaction mixture in a microcentrifuge tube. Primer annealing sites were located in the 3'' portion of the mitochondrial gene coding for cytochrome oxidase subunit II and in the 16S rRNA gene. Following PCR amplification, fragments of three sizes were detected. The M. incognita and M. javanica reactions produced a 1.7-kb fragment; the M. arenaria reaction, a 1.1-kb fragment; and the M. hapla and M. chitwoodi reactions resulted in a 0.52-kb fragment. Digestion of the amplified product with restriction endonucleases allowed discrimination among species with identically sized amplification products. Dra I digestions of the 0.52-kb amplification product produced a characteristic three-banded pattern in M. chitwoodi, versus a two-banded pattern in M. hapla. Hinf I digestion of the 1.7-kb fragment produced a two-banded pattern in M. javanica, versus a three-banded pattern in M. incognita. Amplification and digestion of DNA from juveniles from single isolates of M. marylandi, M. naasi, and M. nataliei indicated that the diagnostic application of this primer set may extend to less frequently encountered Meloidogyne species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号