首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract Background: Allogeneic bone transplantation is at risk of infection, and established disinfection methods typically compromise bone quality. High hydrostatic pressure (HHP) is well established for disinfection in food technology, and also it does protect biomechanical and biological properties of bone. This study is the first investigation of HHP regarding disinfection of bone biopsies. Materials and methods: Bone biopsies of 34 patients with chronic infections were subjected to HHP and assessed for persisting bacterial growth. In series 1, bone biopsies were proceeded directly to HHP (10 min; maximal pressure P(max) 600 MPa). In series 2, HHP was applied after 5-day incubation in growth media (10 min or 2x30 min; P(max) 600 MPa). Furthermore, HHP-induced changes of bacterial morphology on artificially infected bone samples were evaluated by scanning electron microscopy (SEM). Results: For series 1, 71% of the bone samples were sterilised by HHP (n=17), compared to 38% of the untreated control samples, which were obtained during the same surgery (n=8). For series 2, after prior incubation, HHP disinfected 7% of the bone specimens (n=55), all control samples showed bacterial growth (n=33). Destruction of cell wall integrity of Gram-negative strains was observed by SEM. Conclusion: The effectiveness of HHP for bone disinfection should be improved by optimising treatment parameters. Infections with barosensitive Gram-negative bacteria or yeast might represent possible clinical indications.  相似文献   

2.
Kim SN  Bae SJ  Kwak HB  Min YK  Jung SH  Kim CH  Kim SH 《Amino acids》2012,42(4):1455-1465
We investigated the in vitro and in vivo osteogenic activity of licochalcone A. At low concentrations, licochalcone A stimulated the differentiation of mouse pre-osteoblastic MC3T3-E1 subclone 4 (MC4) cells and enhanced the bone morphogenetic protein (BMP)-2-induced stimulation of mouse bi-potential mesenchymal precursor C2C12 cells to commit to the osteoblast differentiation pathway. This osteogenic activity of licochalcone A was accompanied by the activation of extracellular-signal regulated kinase (ERK). The involvement of ERK was confirmed in a pharmacologic inhibition study. Additionally, noggin (a BMP antagonist) inhibited the osteogenic activity of licochalcone A in C2C12 cells. Licochalcone A also enhanced the BMP-2-stimulated expression of various BMP mRNAs. This suggested that the osteogenic action of licochalcone A in C2C12 cells could be dependent on BMP signaling and/or expression. We then tested the in vivo osteogenic activity of licochalcone A in two independent animal models. Licochalcone A accelerated the rate of skeletal development in zebrafish and enhanced woven bone formation over the periosteum of mouse calvarial bones. In summary, licochalcone A induced osteoblast differentiation with ERK activation in both MC4 and C2C12 cells and it exhibited in vivo osteogenic activity in zebrafish skeletal development and mouse calvarial bone formation. The dual action of licochalcone A in stimulating bone formation and inhibiting bone resorption, as described in a previous study, might be beneficial in treating bone-related disorders.  相似文献   

3.
Calcium phosphate (Ca-P) scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2) loaded calcium-deficient hydroxyapatite (CDHA) scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP) activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2) promoted osteogenic differentiation of bone marrow stromal cells (bMSCs) significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ±5.32%) and area (40.71% ±7.14%) as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ±0.44%, calcein: 6.08% ±1.37%) and mineral apposition rate (4.13±0.62 µm/day) in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17±15.02 Mpa) and load of fracture (144.67±16.13 N). These results lay a potential framework for future study by using trehalose to preserve growth factor bioactivity and optimize release profile of Ca-P based delivery system for enhanced bone regeneration.  相似文献   

4.
In vivo cytogenetic effects of cooked food mutagens   总被引:3,自引:0,他引:3  
Using a variety of in vivo cytogenetic endpoints, we have investigated the effects of several compounds formed during the cooking of meat. C57Bl/6 mice were used to test for an increase in the frequency of sister-chromatid exchanges (SCEs), chromosomal aberrations, and micronucleated erythrocytes by 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). MeIQx and DiMeIQx did not induce SCEs in mouse bone marrow cells. PhIP induced sister-chromatid exchanges, but not chromosomal aberrations in bone marrow. In peripheral blood lymphocytes, PhIP did induce aberrations at 100 mg/kg, the highest dose tested. PhIP induced a low but significantly increased frequency of micronuclei in normochromatic but not polychromatic erythrocytes in bone marrow and peripheral blood. However, dose responses were not observed. With the exception of the SCEs induced by PhIP, these results contrast with observations made in vitro, where these compounds were found to have significant genotoxicity in mammalian cells and a very high mutation frequency in prokaryotic systems.  相似文献   

5.
Alpha-Fetoprotein (AFP) is a major serum glycoprotein during embryonic and early postnatal life. A number of diverse biologic functions have been attributed to AFP, including osmotic and carrier function and immunosuppressive activity. In this study we demonstrate that AFP selectively stimulates in vitro proliferation of two distinct subsets of adult murine bone marrow cells. One population of AFP-reactive bone marrow cells expresses surface receptors for soybean agglutinin (SBA) lectin. SBA+ bone marrow cells are resistant to cytotoxic pretreatment with T-cell-specific antisera and are not retained on Ig-anti-Ig affinity columns. The absence of conventional T- and B-cell markers, coupled with the presence of SBA receptors, suggests that AFP-activated non-T bone marrow cells may belong to an immature set of B lymphocytes. A second population of AFP-responsive bone marrow cells expresses the Thy-1+ Lyt 1+2- phenotype characteristic of conventional mature adult T helper cells. The potential physiological relevance of the mitogenic effects of AFP on bone marrow cells with respect to immunoregulatory processes in the fetal/newborn environments is discussed.  相似文献   

6.
We previously reported that deletion of the Fgf2 gene (Fgf2-/-) resulted in decreased bone mass in adult mice. This study examines the effect of haplo-insuffiency (Fgf2+/-) on bone loss in vertebrae from these mutant mice. Fgf2+/+ mice attained peak bone mass at 8-9 months of age. In contrast BMD was significantly reduced in vertebrae from adult (8-9) Fgf2+/- mice. Exogenous FGF-2 rescued reduced bone nodule formation in Fgf2+/- and Fgf2-/- cultures. Runx2 mRNA was reduced in cultures from Fgf2+/- and Fgf2-/- mice. FGF receptor2 mRNA and protein were markedly reduced in Fgf2+/- and Fgf2-/- mice. Decreased bone formation in Fgf2 mutant mice may correlate with impaired FGFR signaling, decreased Runx2 gene expression.  相似文献   

7.
Single element foil strain gages were bonded to mandibular cortical bone in eight specimens of Galago crassicaudatus. The gage was bonded below the Pm4 or M2 adjacent to the lower border of the mandible. The bonded strain gage was connected to form one arm of a Wheatstone bridge. Following recovery from the general anesthetic, the restrained Galago bit either a piece of wood, a food object, or a bite force transducer. During these biting episodes, mandibular bone strain deformed the strain gage and the resulting change in electrical resistance of the gage caused voltage changes across the Wheatstone bridge. These changes, directly proportional to the amount of bone strain along the gage site, were recovered by a strip chart recorder. Bone strain was measured on both the working and balancing sides of the jaws. Maximum values of bone strain and bite force were 435 microstrain (compression) and 8.2 kilograms respectively. During bending of the mandible, the correlation between bone strain (tension or compression) and bite force ranged from -0.893 (tension) to 0.997 (compression). The experiments reported here demonstrate that only a small percentage of the Galago bite force is due to balancing side muscle force during isometric unilateral molar biting. In addition, these experiments demonstrate that the Galago mandible is bent in a predictable manner during biting. The amount of apparent mandibular bone strain is dependent on (1) the magnitude of the bite force and (2) the position of the bite point.  相似文献   

8.
《The Journal of cell biology》1983,97(6):1950-1953
An in vitro system has been developed to study the onset of chondrogenesis. Embryonic rat muscle mesenchymal cells, when treated in suspension culture with an extract of bovine bone matrix, synthesized cartilage-specific proteoglycan and type II collagen. The synthesis of these two macromolecules was assayed by the enzyme-linked immunosorbent assay inhibition technique. Further evidence of chondrogenesis was demonstrated by morphological changes of treated cells when cultured in firm agarose and stained for metachromatic matrix. Even with crude bone matrix extracts, the assay was sensitive at the microgram level and significant differences in cartilage macromolecules compared with controls were observed in 2-3 d. In vivo the same extract induced first cartilage and then bone.  相似文献   

9.
Zinc is one of the trace elements which induce the proliferation and the differentiation of the osteoblast. In the previous study, we found that zinc ions (Zn2+ ion)-releasing titanium implants had excellent bone fixation using a rabbit femurs model. In this study, we isolated the Zn2+ ions (eluted Zn2+ ion; EZ) released from the implant surface, and evaluated the effect of EZ on the osteogenesis of human bone marrow-derived mesenchymal cells (hBMCs). In the result, it was found that the EZ stimulated cell viability, osteoblast marker gene (type I collagen, osteocalcin (OC), alkaline phosphatase (ALP) and bone sialoprotein (BSP)) expressions and calcium deposition in hBMCs.  相似文献   

10.
Adoptive transfer of bone marrow cells to syngeneic lethally irradiated C57BL/6 mice was used to study the maturation of natural killer (NK) cells from their progenitors. The NK progenitor cell was found to be asialomonoganglioside-negative, (aGM1-) Thy-1-, NK-1-, Ly-1-, Ly-2-, and L3T4-. The NK cells emerging from the bone marrow grafts were aGM1+, NK-1+, Thy-1+/-, Ly-1-, Ly-2-, and L3T4- and to have a target specter similar to that of NK cells isolated from the spleen of normal mice. The regulatory role of interleukin 2 (IL-2) and interleukin 3 (IL-3) for the maturation of NK cells was examined by exposure of the bone marrow cells to the lymphokines in vitro before bone marrow grafting or by treatment of bone marrow-grafted mice with lymphokines through s.c. implanted miniosmotic pumps. IL-3 antagonized the IL-2-induced maturation of NK cells in vitro and strongly inhibited the generation of NK cells after adoptive transfer of bone marrow cells in vivo. The suppressive effect of IL-3 was evident throughout the treatment period (8 or 16 days) but was apparently reversible because NK activity returned to control levels within 8 days after cessation of treatment. The inhibition of cytotoxic activity was accompanied by a reduced appearance of cells with the NK phenotypic markers aGM1 or NK-1, indicating that not only the cytotoxic activity of NK cells but also their actual formation was inhibited. Concomitantly, a moderate increase in cells expressing the T cell marker L3T4 and an increased proliferative response to the T cell mitogen concanavalin A was observed. A direct estimate of the effect of IL-3 on the frequency of NK cell progenitors was obtained by limiting dilution analysis of bone marrow cells at day 8 after bone marrow transplantation. The estimated minimal frequency of NK cell progenitors was reduced from 1/11,800 in control to 1/41,900 in IL-3-exposed mice. IL-3 may take part in the homeostasis of NK cells by the down-regulation of their progenitors.  相似文献   

11.
A healthy skeleton relies on bone''s ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK−/− clonal lines and conditional FAK knockout mice, respectively. FAK−/− osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.  相似文献   

12.
13.
Rosette and single-element strain gauges were implanted on the tibia in 2 dogs and recordings were made during locomotion on a treadmill. At foot contact and during the swing phase of locomotion, bone strains were low and directions of the principal strains were variable. There was a large shift in the directions of the principal strains at the beginning of the stance phase and bone strains were considerably higher. Peak strain occurred midway through the stance phase. At that time, the maximum principal strain (tension) was directed upwards and anteriorly between 30 and 60 degrees with respect to the long axis of the tibia. These bone strain patterns in the dog are similar to those found in sheep while both differ markedly from those found in humans.  相似文献   

14.
Mouse bone marrow cells were subjected to electroporation in the presence of RSVCAT and SV2NEO plasmids. CAT activity was detected in the G-418 resistant granulocyte-macrophage colonies. RSVCAT electroporated into primary bone marrow cells, repopulated lethally irradiated mice as demonstrated by the persistence of CAT activity in the hematopoietic tissues showing that electroporation can offer a powerful mode of gene transfer into bone marrow cells.  相似文献   

15.
The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.  相似文献   

16.
The addition of physiological concentrations of zinc (25-200 (Μg/dL) to Dulbecco’s Modified Eagle’s Medium containing tibiae from 19-d chick embryos resulted in a concentration-dependent increase in tibial content of tartrate-resistant acid phosphatase (TRAP) and an increase in bone resorption, as measured by tibial calcium release. This increase in bone resorption was additive to the resorptive effect resulting from the addition of 10-9-10-7 M parathyroid hormone (PTH), but was not additive to similar effects produced by the addition of 10-9-10-7 M prostaglandin E2 (PGE2). An inhibitor of prostaglandin synthesis, flurbiprofen (10-6 M), did not influence the effect of zinc on bone resorption. However, the addition of 2,6-pyridinedicarboxylic acid (10-3 M, 2,6-PDCA), a chelator of zinc, did attenuate the effects of zinc, as did the addition of an inhibitor of DNA replication (hydroxyurea, 10-3 M). Hydroxyurea also attenuated the bone resorptive response to PGE2, but had no influence on the effects of PTH. These results indicate that physiological concentrations of zinc alter bone resorptive rates in vitro by a mechanism that is dependent on DNA replication.  相似文献   

17.
Recombinant human bone morphogenetic protein-2 (rhBMP-2) was biotinated, and the bioactivity of biotinated protein was assessed in vitro (alkaline phosphate induction in limb bud cells) and in vivo (osteoinduction in the rat ectopic assay). Amino-biotinated rhBMP-2 exhibited an increase in bioactivity whereas carboxy-biotinated rhBMP-2 did not exhibit any changes in bioactivity in vitro. Avidin inhibited the bioactivity of amino-biotinated but not carboxyl-biotinated rhBMP-2. Both amino- and carboxy-modified rhBMP-2 induced bone at an equivalent level to that of unmodified rhBMP-2 in vivo. The presence of avidin did not affect the osteoinductive activity of both types of biotinated rhBMP-2. The overall results indicated that binding to a large protein, avidin, might affect rhBMP-2 activity in vitro depending on the binding site; however, in vivo activity was unaffected by the avidin binding.  相似文献   

18.
The inflammatory response following ischemic stroke is dominated by innate immune cells: resident microglia and blood-derived macrophages. The ambivalent role of these cells in stroke outcome might be explained in part by the acquisition of distinct functional phenotypes: classically (M1) and alternatively activated (M2) macrophages. To shed light on the crosstalk between hypoxic neurons and macrophages, an in vitro model was set up in which bone marrow-derived macrophages were co-cultured with hippocampal slices subjected to oxygen and glucose deprivation. The results showed that macrophages provided potent protection against neuron cell loss through a paracrine mechanism, and that they expressed M2-type alternative polarization. These findings raised the possibility of using bone marrow-derived M2 macrophages in cellular therapy for stroke. Therefore, 2 million M2 macrophages (or vehicle) were intravenously administered during the subacute stage of ischemia (D4) in a model of transient middle cerebral artery occlusion. Functional neuroscores and magnetic resonance imaging endpoints (infarct volumes, blood-brain barrier integrity, phagocytic activity assessed by iron oxide uptake) were longitudinally monitored for 2 weeks. This cell-based treatment did not significantly improve any outcome measure compared with vehicle, suggesting that this strategy is not relevant to stroke therapy.  相似文献   

19.
The in vitro toxicity of T-2 toxin towards mouse lymphoid cells prepared from spleen, thymus, peritoneal lavage and bone marrow cells was studied. Bone marrow cells were more resistant to damage by T-2 toxin than thymus, spleen and peritoneal cell preparations.  相似文献   

20.
Bone marrow contains cell type termed mesenchymal stem cells (MSC), first recognized in bone marrow by a German pathologist, Julius Cohnheim in 1867. That MSCs have potential to differentiate in vitro in to the various cells lines as osteoblast, chondroblast, myoblast and adipoblast cells lines. Aims of our study were to show in vivo capacity of bone marrow MSC to produce bone in surgically created non critical size mandible defects New Zeland Rabbits, and then in second part of study to isolate in vitro MSC from bone marrow, as potential cell transplantation model in bone regeneration. In vivo study showed new bone detected on 3D CT reconstruction day 30, on all 3 animals non critical size defects, treated with bone marrow MSC exposed to the human Bone Morphogenetic Protein 7 (rhBMP-7). Average values of bone mineral density (BMD), was 530 mg/cm3, on MSC treated animals, and 553 mg/cm3 on control group of 3 animals where non critical size defects were treated with iliac crest autologue bone graft. Activity of the Alkaline Phosphatase enzyme were measurement on 0.5, 14, 21, 30 day and increased activity were detected day 14 on animals treated with bone marrow MSCs compared with day 30 on iliac crest treated animals. That results indicates strong osteoinduction activity of the experimental bone marrow MSCs models exposed to the rhBMP-7 factor Comparing ALP activity, that model showed superiorly results than control group. That result initiates us in opinion that MSCs alone should be alternative for the autolologue bone transplantation and in vitro study we isolated singles MSCs from the bone marrow of rat's tibia and femora and cultivated according to the method of Maniatopoulos et all. The small initial colonies of fibroblast like cells were photo-documented after 2 days of primary culture. Such isolated and cultivated MSCs in future studies will be exposed to the growth factors to differentiate in osteoblast and indicate their clinically potential as alternative for conventional medicine and autologue bone transplantation. That new horizons have potential to minimize surgery and patient donor morbidity, with more success treatment in bone regenerative and metabolism diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号