首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cut flower producers currently have limited options for nematode control. Four field trials were conducted in 2006 and 2007 to evaluate Midas® (iodomethane:chloropicrin 50:50) for control of root-knot nematodes (Meloidogyne arenaria) on Celosia argentea var. cristata in a commercial floriculture production field in southeastern Florida. Midas (224 kg/ha) was compared to methyl bromide:chloropicrin (98:2, 224 kg/ha), and an untreated control. Treatments were evaluated for effects on Meloidogyne arenaria J2 and free-living nematodes in soil through each season, and roots at the end of each season. Plant growth and root disease were also assessed. Population levels of nematodes isolated from soil were highly variable in all trials early in the season, and generally rebounded by harvest, sometimes to higher levels in fumigant treatments than in the untreated control. Although population levels of nematodes in soil were not significantly reduced during the growing season, nematodes in roots and galling at the end of the season were consistently reduced with both methyl bromide and Midas compared to the untreated control. Symptoms of phytotoxicity were observed in Midas treatments during the first year and were attributed to Fe toxicity. Fertilization was adjusted during the second year to investigate potential fumigant/fertilizer interactions. Interactions occurred at the end of the fourth trial between methyl bromide and fertilizers with respect to root-knot nematode J2 isolated from roots and galling. Fewer J2 were isolated from roots treated with a higher level of Fe (3.05%) in the form of Fe sucrate, and galling was reduced in methyl bromide treated plots treated with this fertilizer compared to Fe EDTA. Reduced galling was also seen with Midas in Fe sucrate fertilized plots compared to Fe EDTA. This research demonstrates the difficulty of reducing high root-knot nematode population levels in soil in subtropical conditions in production fields that have been repeatedly fumigated. Although soil population density may remain stable, root population density and disease can be reduced.  相似文献   

2.
Penetration, development and migration of the cotton root-knot nematode, Meloidogyne incognita acrita, in resistant and susceptible alfalfa varieties was compared. Larvae entered both resistant and susceptible plants in approximately the same numbers. After 3 to 4 days, the number of larvae in resistant roots decreased sharply until at 7 days fewer than 5 larvae/seedling and no nematode development could be found. In susceptible roots, larvae became sedentary and developed normally; egg production began as early as 18 days after penetration of the host.  相似文献   

3.
The northern root-knot nematode (Meloidogyne hapla) is a major pathogen of processing carrot in New York, significantly reducing marketable yield and profitability. Severely infected carrots are stubby, galled and forked and therefore unmarketable. In field microplot trials in 1996 and 1998, the incidence and severity of root-galling increased and the marketable yield of carrot decreased as the initial inoculum density of M. hapla was increased from 0 to 8 eggs/cm3 soil, in mineral or organic soils. The application of oxamyl at planting was effective against M. hapla and its damage to carrots grown in mineral and organic soils. Oxamyl application reduced root-galling severity and increased marketable yield. In commercial fields, the cost-effectiveness of oxamyl application was related to the level of soil infestation with M. hapla.  相似文献   

4.
Five field trials were conducted in Italy in 1983 and 1984 to test the efficacy of isazofos and benfuracarb in controlling Heterodera carotae on carrot, Ditylenchus dipsaci on onion, and Meloidogyne javanica on tomato. Methyl isothiocyanate (MIT) was tested against H. carotae and M. javanica. Single (10 kg a.i./ha) and split (5 + 5 kg a.i./ha) applications of isazofos gave yield increases of carrot and onion similar to those obtained with DD (300 liters/ha) and aldicarb (10 kg a.i./ha). Population densities of H. carotae in carrot roots at harvest and of M. javanica in tomato roots 2 months after transplanting were also suppressed by isazofos. Benfuracarb (10 kg a.i./ha increased onion yields in a field infested with D. dipsaci, but it was not effective against H. carotae or M. javanica. The efficacy of MIT at 400 and 600 liters/ha was similar to that of MIT + DD (Di-Trapex) at 300 liters/ha. Both nematicides inhibited hatch of H. carotae eggs and decreased the soil population density of M. javanica.  相似文献   

5.
Pasteuria penetrans isolate P-20 has been attributed as the cause of soil suppressiveness to peanut root-knot nematode in Florida. In this study, P. penetrans was transferred from a suppressive site to a new site and established by growing susceptible hosts to the peanut root-knot nematode during both summer and winter seasons. When two soil fumigants, 1,3-dichloropropene (1,3-D) and chloropicrin, were applied broadcast at the rate of 168 liters/ha and 263 kg/ha, respectively, the bacterium was not adversely affected by 1,3-D but was adversely affected by chloropicrin. In autumn 2005, after the harvest of the second peanut crop, the greatest number of J2 was recorded in the chloropicrin-treated plots, followed by the non-fumigated plots and 1,3-D-fumigated plots. The percentage J2 encumbered with endospores, endospores per J2 and percentage of P. penetrans-infected females were greatest in the non-fumigated plots, followed by 1,3-D- and chloropicrin-fumigated plots. This study demonstrates that P. penetrans can be transferred from a suppressive site to a new site and increased to suppressive densities against the peanut root-knot nematode.  相似文献   

6.
Two different defined growth media were used to culture aseptically the root-knot nematode, Meloidogyne incognita, on excised roots of tomato, Lycopersicon esculentum cv ''Marglobe.'' One of these media, STW, was a formulation by Skoog, Tsui, and White and the other, MS, a formulation by Murashige and Skoog. From 1 through 4 weeks, inoculated tissues were fractured to observe root infection, giant-cell formation, and nematode development with the scanning electron microscope (SEM). Four weeks after inoculation, the fresh weights of roots and developmental stages of nematodes were recorded. SEM observations indicated that roots cultured on the STW medium had normal growth and infection sites with galls that supported the development of mature females by 4 weeks. Roots cultured on the MS medium were less vigorous and had infection sites with galls containing only one to four syncytialike cells that did not support the development of mature females. Eighty percent of the larvae infecting roots cultured on the MS medium failed to develop into mature females. To determine which factor(s) affected root growth and nematode development, inoculated and uninoculated roots were grown on media consisting of different combinations of the organic and inorganic fractions of the STW and MS formulations. These experiments indicated that the organic fraction of STW was essential for normal root growth; however, the inorganic fraction of MS inhibited normal gall formation and nematode development. Further testing of the inorganic fractions revealed that the high concentration of ammonium nitrate in the MS medium was a factor that inhibited giant-cell formation and nematode development.  相似文献   

7.
Wheat cultivars Anza and Produra grown in winter in California were planted in Meloidogyne incognita infested and noninfested sandy loam plots in October (soil temperature 21 C) and November (soil temperature 16 C) of 1979. Meloidogyne incognita penetrated roots of mid-October planted Ataza (427 juveniles/g root), developed into adult females by January, and produced 75 eggs/g root by harvest in April. Penetration and development did not occur in late plantings. Anza seedlings grown in infested soil in pots buried in field soil in early spring were not invaded until soil temperature exceeded 18 C. Meloidogyne incognita juveniles can migrate through soil and penetrate roots at temperatures above 18 C (activity threshold), however development can occur at lower temperatures. Grain yields were not significantly different between nematode infested (3,390 kg/ha) and noninfested (2,988 kg/ha) plots. Winter decline of eggs and juveniles in two late plantings anti in fallow soil were 69, 72, and 77%, respectively, but egg and juvenile decline was only 40% in the early Anza plots that supported nematode reproduction in the spring. Delay of planting date until soil temperature is below 18 C is suggested to maximize the use of wheat in rotation as a nematode pest management cultural tactic for suppressing root-knot nematodes.  相似文献   

8.
Excised tomato roots were examined histologically for interactions of the fungus Paecilomyces lilacinus and Meloidogyne incognita race 1. Root galling and giant-cell formation were absent in tomato roots inoculated with nematode eggs infected with P. lilacinus. Few to no galls and no giant-cell formation were found in roots dipped in a spore suspension of P. lilacinus and inoculated with M. incognita. Numerous large galls and giant cells were present in roots inoculated only with M. incognita. P. lilacinus colonized the surface of epidermal cells as well as the internal cells of epidermis and cortex. The possibility of biological protection of plant surfaces with P. lilacinus against root-knot nematodes is discussed.  相似文献   

9.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

10.
Reproduction of Meloidogyne javanica was compared on several Agrobacterium rhizogenes-transformed root cultures under monoxenic conditions. M. javanica reproduced on all transformed roots tested; however, more females and eggs were obtained on potato and South Australian Early Dwarf Red tomato than on bindweed, Tropic tomato, lima bean, or carrot. Roots that grew at moderate rates into the agar and produced many secondary roots supported the highest reproduction. Numbers of females produced in cultures of transformed potato roots increased with increasing nematode inoculum levels, whether inoculum was dispersed eggs or juveniles. Females appeared smaller, produced fewer eggs, and were found in coalesced galls at the higher inoculum levels. The ratio between the final and initial population decreased sharply as the juvenile inoculum increased. The second-stage juvenile was preferred to dispersed eggs or egg masses for inoculation of tissue culture systems because quantity and viability of inoculum were easily assessed. Meloidogyne javanica reared on transformed root cultures were able to complete their life cycles on new transformed root cultures or greenhouse tomato plants.  相似文献   

11.
Currently, synthetic pesticides which are highly detrimental to man and the environment are the principal means of nematode control. However, the use of organic amendments might provide a sustainable control option as nematicidal properties have been identified in many animal wastes. A field experiment was carried out to determine the effectiveness of different levels of poultry manure (PM) applications on root-knot nematode infestation of carrot. There were four treatments (0, 2, 4 and 6?t/ha of PM) laid out in a randomised complete block design with four replications. The various levels of PM were worked into the soil on raised beds before carrot seeds were sown. Data were taken on growth performance (plant height, number of leaves and canopy spread), yield characteristics (root weight, root length and root girth) and infestation (root-galling index and nematode population in the soil). PM significantly reduced both root galling and nematode population with 4?t/ha significantly increasing yield characters of carrot. Since PM significantly reduced (p?<?0.05) nematode infestation and promoted growth and yield of carrot, farmers are encouraged to use it preferably at 4?t/ha.  相似文献   

12.
The nature of resistance in Cucumis ficifolius and C. metuliferus to the root-knot nematode, Meloidogyne incognita acrita, was studied under greenhouse conditions. Although as many larvae penetrated the roots of these species as those of the susceptible C. melo, few developed to the adult female stage. Resistance in C. ficifolius and C. metuliferus was associated with hindrance of larval development beyond the second stage, delayed development of larvae to adults and stimulation toward maleness. Tissue necrosis or hypersensitivity was not associated with larval penetration. Comparisons of the histopathology of 26-day-old infections of C. melo and C. metuliferus roots showed no observable differences in the type of giant cell development in regions of roots associated with adult females. However, in C. rnetuliferus immature nematodes were associated with small giant cells which were limited to a few cells near the head of the nematode.  相似文献   

13.
The infectivity of Pratylenchus penetrans on alfalfa seedlings cv. Du Pulls was studied. The dense root-hair zone was the preferred zone of penetration by females, males, and third-stage larvae. A lesion initially appeared as a water-soaked area at the root surface, becoming yellow and elliptical as the nematode entered the cortex, with dark-brown cells later appearing in the centre as the nematode fed. At 20 C, females penetrated roots earlier, faster, and in greater numbers than either males or third-stage larvae. Females penetrated roots at temperatures from 5 to 35 C, with maximum penetration between 10 and 30 C, while males and third-stage larvae penetrated roots only between 10 and 30 C with maximum penetration a t 20 C. Penetration of roots by females, males, and third-stage larvae increased after storage of 5 C for 35 days, but decreased after storage of 140 days or more. Combinations of the three life stages in pairs neither enhanced nor inhibited penetration of roots by individual life stages; males were not attracted to females. Increasing inoculum density up to 20 nematodes/seedling did not affect penetration.  相似文献   

14.
Root knot (Meloidogyne spp.) and cyst (Heterodera and Globodera spp.) nematodes infect all important crop species, and the annual economic loss due to these pathogens exceeds $90 billion. We screened the worldwide accession collection with the root-knot nematodes Meloidogyne incognita, M. arenaria and M. hapla, soybean cyst nematode (SCN-Heterodera glycines), sugar beet cyst nematode (SBCN-Heterodera schachtii) and clover cyst nematode (CLCN-Heterodera trifolii), revealing resistant and susceptible accessions. In the over 100 accessions evaluated, we observed a range of responses to the root-knot nematode species, and a non-host response was observed for SCN and SBCN infection. However, variation was observed with respect to infection by CLCN. While many cultivars including Jemalong A17 were resistant to H. trifolii, cultivar Paraggio was highly susceptible. Identification of M. truncatula as a host for root-knot nematodes and H. trifolii and the differential host response to both RKN and CLCN provide the opportunity to genetically and molecularly characterize genes involved in plant-nematode interaction. Accession DZA045, obtained from an Algerian population, was resistant to all three root-knot nematode species and was used for further studies. The mechanism of resistance in DZA045 appears different from Mi-mediated root-knot nematode resistance in tomato. Temporal analysis of nematode infection showed that there is no difference in nematode penetration between the resistant and susceptible accessions, and no hypersensitive response was observed in the resistant accession even several days after infection. However, less than 5% of the nematode population completed the life cycle as females in the resistant accession. The remainder emigrated from the roots, developed as males, or died inside the roots as undeveloped larvae. Genetic analyses carried out by crossing DZA045 with a susceptible French accession, F83005, suggest that one gene controls resistance in DZA045.  相似文献   

15.
Use of resistant cultivars is a desirable approach to manage the peanut root-knot nematode (Meloidogyne arenaria). To incorporate resistance into commercially acceptable cultivars requires reliable, efficient screening methods. To optimize the resistance screening protocol, a series of greenhouse tests were done using seven genotypes with three levels of resistance to M. arenaria. The three resistance levels could be separated based on gall indices as early as two weeks after inoculation (WAI) using 8,000 eggs of M. arenaria per plant, while four or more weeks were needed when 1,000–6,000 eggs/plant were used. High inoculum densities (over 8,000 eggs/plant) were needed to separate the three resistance levels based on eggs per gram of root within eight WAI. A gall index based on percentage of galled roots could separate the three resistance levels at lower inoculum levels and earlier harvest dates than other assessment methods. The use of eggs vs. second-stage juveniles (J2) as inoculum provided similar results; however, it took three to five more days to collect J2 than to collect eggs from roots. Plant age affected gall index and nematode reproduction on peanut, especially on the susceptible genotypes AT201 and D098. The genotypes were separated into their correct resistance classes when inoculated 10 to 30 days after planting, but were not separated correctly when inoculated on day 40.  相似文献   

16.
Phenamiphos applied at 6.7 kg ai/ha through a solid set or a center pivot irrigation system with 28 mm of water effectively controlled root-knot nematodes, Meloidogyne incognita, and resulted in greater snap bean growth and yields irrespective of growing season, tillage method, or cover crop system. The percentage yield increases attributed to this method of M. incognita control over nontreated controls were 45% in the spring crop, and 90% and 409% in the fall crops following winter rye and fallow, respectively. Root galling was not affected by tillage systems or cover crop, but disk tillage resulted in over 50% reduction in bean yield compared with yields from the subsoil-bed tillage system.  相似文献   

17.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

18.
If Meloidogyne incognita preceded Rhizoctonia solani by 10 days or 21 days in roots of greenhouse-grown tobacco plants, root rot was more extensive than when the nematode and fungus were introduced either simultaneously or separately or when R. solani was added after artificial wounding. Histological examination of galled roots 72 days after inoculation with R. solani revealed extensive fungal colonization in the root-knot susceptible cultivar ''Dixie Bright 101'' when M. incognita preceded R. solani by 21 days. R. solani, normally nonpathogenic on mature tobacco roots, may cause severe losses when present with well-established root-knot nematode infections.  相似文献   

19.
The effects of a root-knot nematode-resistant tomato cultivar and application of the nematicide ethoprop on root-knot nematode injury to cucumber were compared in a tomato-cucumber double-cropping system. A root-knot nematode-resistant tomato cultivar, Celebrity, and a susceptible cultivar, Heatwave, were grown in rotation with cucumber in 1995 and 1996. Celebrity suppressed populations of Meloidogyne incognita in the soil and resulted in a low root-gall rating on the subsequent cucumber crop. Nematode population densities were significantly lower at the termination of the cucumber crop in plots following Celebrity than in plots following Heatwave. Premium and marketable yields of cucumbers were higher in plots following Celebrity than in plots following Heatwave. Application of ethoprop through drip irrigation at 4.6 kg a.i./ha reduced root galling on the cucumber crop but had no effect on the nematode population density in the soil at crop termination. Ethoprop did not affect cucumber yield. These results indicate that planting a resistant tomato cultivar in a tomato-cucumber double-cropping system is more effective than applying ethoprop for managing M. incognita.  相似文献   

20.
Cotton farmers in Missouri commonly apply a single rate of aldicarb throughout the field at planting to protect their crop from Meloidogyne incognita, even though these nematodes are spatially aggregated. Our purpose was to determine the effect of site-specific application of aldicarb on cotton production in a field infested with these nematodes in 1997 and 1998. Cotton yields were collected from sites not treated with aldicarb (control), sites receiving aldicarb at the standard recommended rate of 0.58 kg a.i./ha, and sites receiving specific aldicarb rates based on the soil population densities of second-stage infective juveniles of root-knot nematode. Yields for the standard rate and site-specific rate treatments were similar and greater (P ≤ 0.05) than the control treatment. Less aldicarb was used for the site-specific than the uniform-rate treatment each year—46% less in 1997 and 61% less in 1998. Costs associated with the site-specific treatment were very high compared with the uniform-rate treatment due to a greater number of soil samples analyzed for nematodes. Site-specific application of aldicarb for root-knot nematode management in cotton may pose fewer environmental risks than the uniform-rate application of aldicarb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号