首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel hypothalamic peptide with 38 (PACAP38) or 27 (PACAP27) amino acid residues, structurally related to vasoactive intestinal peptide (VIP). Bovine brain membrane has a PACAP specific receptor interacting with both PACAP27 and PACAP38. Affinity-labeling of the receptor with [125I]PACAP27 identified a dominant band of Mr = 60 k. The labeling density of the 60 k band decreased in the presence of unlabeled PACAP27 or PACAP38, whereas the 60 k band remained in the presence of unlabeled VIP. Binding of [125I]PACAP27 to the membrane decreased in the presence of GTP and the labeling density of the 60 k band decreased concomitantly. The results indicate that bovine brain has a specific PACAP receptor, whose apparent molecular weight is 57 k (substracting the molecular weight of [125I]PACAP27 from 60 k).  相似文献   

5.
PACAP (pituitary adenylate cyclase-activating polypeptide) is a member of the VIP/secretin/glucagon family, which includes the ligands of class II G-protein coupled receptors. Since the recognition of PACAP by the receptor may involve the binding of PACAP to membranes, its membrane-bound structure should be important. We have carried out structural analysis of uniformly 13C,15N labeled PACAP27 and its C-terminal truncated form PACAP(1-21)NH2 (PACAP21) bound to membranes with high resolution solid-state NMR. Phosphatidylcholine bilayers and phosphatidylcholine/phosphatidylglycerol bilayers were used for PACAP27 and PACAP21, respectively. Most backbone signals were assigned for PACAP27 and PACAP21. TALOS analysis revealed that both peptides take on extended conformations on the membranes. Dilution of PACAP21 did not change the conformation of the major part. Selective polarization transfer experiment confirmed that PACAP27 is interacting with the membranes. It was concluded that the interaction of PACAP with the membrane surface causes their extended conformation. PACAP27 is reported to take an alpha-helical conformation in dodecylphosphocholine micelles and membrane-binding peptides usually take similar conformations in micelles and in membranes. Therefore, the property of PACAP27 changing its conformation in response to its environment is unique. Its conformational flexibility may be associated with its wide variety of functions.  相似文献   

6.
Effects of pituitary adenylate cyclase-activating polypeptide (PACAP38) and PACAP27 on the cardiovascular and respiratory systems were examined and compared to those of vasoactive intestinal polypeptide (VIP) in anesthetized beagle dogs. Intravenous PACAP27 and PACAP38 produced a decrease in mean arterial blood pressure (MBP), and an increase in both femoral arterial blood flow (ABF) and in frequency of respiration (FR) with a dose-dependent relationship between 10 and 300 pmol/kg. PACAP27 produced a dose-dependent increase in heart rate (HR) between 10 and 300 pmol/kg while PACAP38 induced tachycardia which was not dose-dependent. Administration of 300 pmol/kg PACAP38 and PACAP27 produced extreme hypertension after transient hypotension. PACAP38 produced severe bradycardia after transient tachycardia. The cardiovascular actions of PACAP38 were persistent compared to those of PACAP27. Intravenous injection of 10-300 pmol/kg VIP brought about hypotension, tachycardia and an increase in ABF and FR with a dose-dependent relationship. VIP, at 2000 pmol/kg, did not produce the biphasic response obtained by a large dose of PACAP38. The present studies demonstrate that PACAP partially possesses VIP-like cardiovascular and respiratory actions and that the C-terminal 11 amino acid residues of PACAP38 are presumably responsible for a prolongation of its actions.  相似文献   

7.
The goal of these experiments was to identify and characterize binding sites in the rat hypothalamus for the peptide, pituitary adenylate cyclase activating polypeptide (PACAP). The 27 amino acid form of PACAP (PACAP27) was used as the radiolabeled ligand in these experiments. Binding of [125I]PACAP27 to hypothalamic membrane preparations was rapid, reversible on addition of unlabeled peptide, and at least partially regulated by GTP. Nonhydrolyzable GTP analogs, guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S), guanosine-5'-(2-thiodiphosphate) (GDP beta S), and guanylylimidophosphate (GppNHp) also displaced [125I]PACAP27 binding to hypothalamic membrane preparations in a dose-dependent manner. The order of potency for the three analogs was GTP gamma S greater than GDP beta S greater than GppNHp. Both forms of the peptide, PACAP27 and PACAP38, were highly potent in displacing bound [125I]PACAP27, whereas VIP or PACAP(1-23) were unable to displace binding at concentrations of up to 500 nM. Scatchard analysis of the PACAP27 and PACAP38 displacement curves revealed that the fit of both curves was consistent with a single class of high-affinity binding sites, although the site exhibited a greater affinity for PACAP38 compared with PACAP27 (PACAP27 Kd = 1452 +/- 59 pM; PACAP38 Kd = 175 +/- 13 pM; Bmax 23.2 +/- 1.1 pmol/mg protein). The possibility of the existence of a class of binding sites with extremely low affinity cannot be discounted. After covalent cross-linking of [125I]PACAP27 with its receptor, the molecular weights of the complexes were estimated by electrophoresis and autoradiography. A major band of 60 Kd was evident when membranes were incubated with VIP or PACAP(1-23). Previous incubation with unlabeled PACAP27 or PACAP38 eliminated visualization of this band. These results suggest that a specific, high-affinity binding site for PACAP27 is present in rat hypothalamus, and that this site shows a greater affinity for PACAP38 compared with PACAP27. The molecular weight of the peptide-receptor complex is 60,000 kDa, and therefore the receptor itself has an apparent molecular weight 57,000.  相似文献   

8.
We have developed a novel and easy enzyme-immunoassay (EIA) for pituitary adenylate cyclase-activating polypeptide (PACAP). We used it to determine immunoreactive PACAP levels in the central nervous system (CNS) and peripheral tissues of two fishes, a teleost (the stargazer) and an elasmobranch (a stingray). An antiserum was raised in a white rabbit immunized with a conjugate of synthetic stargazer PACAP27 plus keyhole limpet hemocyanin. The EIA system used an antiserum/biotin-labeled PACAP/avidin/biotin-conjugated enzyme complex, and a double antibody method was used to precipitate the immune complexes. We call the system the avidin-biotin complex detectable EIA (ABCDEIA) for PACAP. ABCDEIA with biotin-labeled PACAP27 detected only PACAP27, recognizing neither the longer forms of PACAP nor any other peptides. PACAPs with 27, 38, and 44 residues cross-reacted in another ABCDEIA with biotin-labeled PACAP38 or PACAP44. Whole brains of both fishes contained much higher levels of PACAP, 6-30 times as high as the levels in the mammalian brain, but unexpectedly, no immunoreactive PACAP27 was found in any CNS or peripheral tissue in either fish. The gastrointestinal tracts of fish also contained lower, but significant amounts of PACAP.  相似文献   

9.
PACAP (pituitary adenylate cyclase-activating polypeptide) is a member of the VIP/secretin/glucagon family, which includes the ligands of class II G-protein coupled receptors. Since the recognition of PACAP by the receptor may involve the binding of PACAP to membranes, its membrane-bound structure should be important. We have carried out structural analysis of uniformly 13C,15N labeled PACAP27 and its C-terminal truncated form PACAP(1-21)NH2 (PACAP21) bound to membranes with high resolution solid-state NMR. Phosphatidylcholine bilayers and phosphatidylcholine/phosphatidylglycerol bilayers were used for PACAP27 and PACAP21, respectively. Most backbone signals were assigned for PACAP27 and PACAP21. TALOS analysis revealed that both peptides take on extended conformations on the membranes. Dilution of PACAP21 did not change the conformation of the major part. Selective polarization transfer experiment confirmed that PACAP27 is interacting with the membranes. It was concluded that the interaction of PACAP with the membrane surface causes their extended conformation. PACAP27 is reported to take an α-helical conformation in dodecylphosphocholine micelles and membrane-binding peptides usually take similar conformations in micelles and in membranes. Therefore, the property of PACAP27 changing its conformation in response to its environment is unique. Its conformational flexibility may be associated with its wide variety of functions.  相似文献   

10.
Pituitary adenylate cyclase activating peptide (PACAP) is a novel peptide isolated from the ovine hypothalamus. PACAP exists in 2 molecular forms with 27 (PACAP27) or 38 (PACAP38) amino acid residues. PACAP localization was studied by immunohistochemical methods in central (bone marrow and thymus) and peripheral (spleen, lymph nodes and duodenal mucosa) lymphoid tissues with antisera raised against PACAP27 or PACAP38. PACAP-positive cells were found in all lymphoid tissues examined. These cells were highly positive for PACAP38 but were negative for PACAP27. Morphologically, they were small mononuclear cells with relatively scarce cytoplasm and lymphocyte-like features. PACAP38-positive cells were abundant in peripheral lymphoid tissues (i.e., mesenteric lymph nodes). In the duodenal mucosa, PACAP38-positive cells were located either in the lamina propria or epithelium. These results suggest that PACAP38-positive cells are present within lymphoid tissues and may represent a lymphocyte-like cell subpopulation that has a potential role in cell-to-cell interactions in the immune system and in the integrated communication between neuroendocrine and immune systems.  相似文献   

11.
For last 2 years since PACAP was first discovered, many important findings on PACAP have been reported. cDNAs encoding the precursor proteins of PACAP in sheep, human and rat were cloned, and the precursor proteins characterized. PACAP was found in a high concentration in the central nervous system, adrenal medulla and testis. Immunohistochemical study indicated that PACAP containing neural fibers are present throughout the brain, including both internal and external zones of the median eminence. In the hypothalamus many PACAP positive cell bodies were demonstrated in the supraoptic nucleus and the paraventricular nucleus in various species. Four types of high affinity PACAP receptor were demonstrated. PACAP receptors in the central nervous system, pituitary, adrenal medulla and germ cells of the testis are highly specific for PACAP, and not shared with VIP. The PACAP receptor was solubilized and cross-linking of 125I-PACAP27 with the binding protein suggest that the molecular weight of the receptor is around 57,000. Various biological actions of PACAP were reported, but the physiological cellular events linked with PACAP-induced activation of adenylate cyclase remain to be investigated.  相似文献   

12.
The aim of the present study was to characterize the effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the endocrine pancreas in anesthetized dogs. PACAP(1-27) and a PACAP receptor (PAC(1)) blocker, PACAP(6-27), were locally administered to the pancreas. PACAP(1-27) (0.005-5 microg) increased basal insulin and glucagon secretion in a dose-dependent manner. PACAP(6-27) (200 microg) blocked the glucagon response to PACAP(1-27) (0.5 microg) by about 80%, while the insulin response remained unchanged. With a higher dose of PACAP(6-27) (500 microg), both responses to PACAP(1-27) were inhibited by more than 80%. In the presence of atropine with an equivalent dose (128.2 microg) of PACAP(6-27) (500 microg) on a molar basis, the insulin response to PACAP(1-27) was diminished by about 20%, while the glucagon response was enhanced by about 80%. The PACAP(1-27)-induced increase in pancreatic venous blood flow was blocked by PACAP(6-27) but not by atropine. The study suggests that the endocrine secretagogue effect of PACAP(1-27) is primarily mediated by the PAC(1) receptor, and that PACAP(1-27) may interact with muscarinic receptor function in PACAP-induced insulin and glucagon secretion in the canine pancreas in vivo.  相似文献   

13.
垂体腺苷酸环化酶激活肽的研究概况   总被引:1,自引:0,他引:1  
垂体腺苷酸环化酶激活肽(PACAP)及其受体存在于许多动物的下丘脑和垂体中,而且在肾上腺、睾丸、卵巢、肝脏、肾脏、胰腺、松果腺、心脏、脊椎、神经节、呼吸系统和消化系统等组织或系统中也存在,其中肾上腺含量最高.在这些组织或系统中,通过Ca2+、Na+、腺苷酸环化酶或磷酸肌醇等作用通路,PACAP发挥神经递质/调质、或神经营养因子等生物学功能.  相似文献   

14.
Several data suggest that pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of local circulation. One possible role of PACAP in the regulation of circulation is that, it may modify the cyclooxygenase pathway of the arachidonate cascade in platelets. Our study was designed to study the effect of PACAP on the cyclooxygenase pathway of rat platelets and on platelet aggregation. PACAP (10(-7) and 10(-6) M) significantly inhibited the cyclooxygenase pathway of platelets, mostly the thromboxane synthesis. Pretreatment with a PACAP receptor antagonist, PACAP(6-38), or with an inhibitor of protein kinase A, H-89, shows that the effects of PACAP on the cyclooxygenase pathway were diminished. In the aggregation studies, PACAP inhibited both the arachidonic acid-induced and the thrombin-induced platelet aggregation. It can be concluded that PACAP inhibits the cyclooxygenase pathway of rat platelets via a specific PACAP receptor-activated, cAMP-dependent pathway, and these effects of PACAP are involved in the inhibition of platelet aggregation.  相似文献   

15.
Abstract: Cytochemical analysis demonstrated that a high percentage of human Y-79 retinoblastoma cells displayed a specific labeling by the biotinyl derivative of pituitary adenylate cyclase-activating polypeptide (PACAP), a novel neuropeptide of the secretin-vasoactive intestinal peptide (VIP) family of peptides. In cell membranes, the two molecular forms of PACAP, the one with 38 (PACAP 38) and the other with 27 (PACAP 27) amino acids, displaced the binding of 125I-PACAP 27 with IC50 values in the picomolar range and increased adenylyl cyclase activity by 100-fold with EC50 values of 27 and 180 p M , respectively. VIP, human peptide histidine-isoleucine, glucagon, and secretin were much less effective and potent in both receptor assays. The PACAP receptor antagonists PACAP 6–27 and PACAP 6–38 and an antiserum directed against the stimulatory G protein Gs inhibited the PACAP stimulation of adenylyl cyclase. In intact cells, both PACAPs and VIP failed to stimulate the phosphoinositide hydrolysis, whereas in cell membranes PACAP 38, but not the other peptides, produced a modest increase (40%) of inositol phosphate formation with an EC50 value of 22 n M . However, this effect was not antagonized by either PACAP 6–38 or PACAP 6–27. These data demonstrate the presence in human Y-79 retinoblastoma cells of specific PACAP receptors and provide further evidence that PACAP may act as a neurotransmitter/neuromodulator in mammalian retina.  相似文献   

16.
17.
Pituitary adenylate cyclase activating polypeptide (PACAP) has well-known neuroprotective effects, and one of the main factors leading to neuroprotection seems to be its anti-apoptotic effects. The peptide and its receptors are present also in the heart, but whether PACAP can be protective in cardiomyocytes, is not known. Therefore, the aim of the present study was to investigate the effects of PACAP on oxidative stress-induced apoptosis in cardiomyocytes. Our results show that PACAP increased cell viability by attenuating H2O2-induced apoptosis in a cardiac myocyte culture. PACAP also decreased caspase-3 activity and increased the expression of the anti-apoptotic markers Bcl-2 and phospho-Bad. These effects of PACAP were counteracted by the PACAP antagonist PACAP6-38. In summary, our results show that PACAP is able to attenuate oxidative stress-induced cardiomyocyte apoptosis.  相似文献   

18.
PACAP exerts multiple activities as a hormone and neurotransmitter, and has been proposed to play vital roles in a variety of neuronal functions. PACAP is also involved in insulin secretion from pancreatic beta-cells. Recently, we and other groups demonstrated that PACAP-deficient mice (PACAP(-/-)) are viable, but suffer from increased postnatal mortality. To ascertain whether this high mortality is rescued by overexpression of PACAP in peripheral tissue (such as pancreas), we performed a genetic cross between PACAP(-/-) and our recently developed transgenic mice overexpressing PACAP in pancreatic beta-cells; and then examined the survival rate of their F2 progeny. PACAP(-/-) mice were segregated into two groups based on mortality as well as body weight gain: PACAP(-/-) that survived >20 days of age with normal weight gain and PACAP(-/-) that died before 20 days with a marked weight loss. Kaplan-Meier survival analysis demonstrated that PACAP(-/-) mice and those carrying the PACAP transgene have similarly lower survival probability compared with their heterozygous littermates that served as positive controls. Further study using additional tissue-specific transgenic or knockout mouse models will be required to determine the causative defects underlying the high mortality of PACAP(-/-) mice.  相似文献   

19.
The high and low affinity binding sites for PACAP were identified in rat astrocytes using [125I]PACAP27 as the labeled ligand. Scatchard analysis of displacement of the bound tracer by unlabeled PACAP27 indicated the existence of two classes of binding sites, with the dissociation constant (Kd) = 1.22 +/- 0.4 nM, the binding maximal capacity (Bmax) = 821 +/- 218 fmols/mg protein for the high affinity binding site, and Kd = 0.59 +/- 0.06 microM, Bmax = 563 +/- 12 pmols/mg protein for the low affinity binding site, respectively. The specificity of [125I]PACAP27 binding was tested using PACAP38 and peptides structurally related to PACAP, such as VIP, GHRF, PHI, secretin and glucagon. PACAP38 completely displaced the binding of [125I]PACAP27 and Scatchard analysis also indicated the presence of two classes of binding sites with similar Kd and Bmax to those for PACAP27. VIP and GHRF competed with [125I]PACAP27, but to a much lesser extent than unlabeled PACAP27 in binding. Other peptides tested did not displace the binding of [125I]PACAP27 at 10(-6) M.  相似文献   

20.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a hypophysiotropic neurohormone, participates in the regulation of pleiotropic functions. The recent discovery of intracellular PACAP receptors in the brain and the testis as well as the physico-chemical characteristics of PACAP, i.e. extended α-helix containing basic residues, prompted us to evaluate the propensity of PACAP to cross the plasma membrane in a receptor-independent manner. Using confocal microscopy and flow cytometry, we demonstrated the ability of FITC-conjugated PACAP to efficiently penetrate into the internal cell compartment by direct translocation and endocytosis through clathrin-coated pits and macropinocytosis. Our study also revealed that, once inside the cells, PACAP38 is not entirely degraded by intracellular enzymes and that a significant amount of intact PACAP38 is also able to exit cells. Moreover, using binding assay on rat nuclear fractions from various tissues, PACAP nuclear receptors were identified. We also found that PACAP stimulates calcium release in rat testis nuclei. Interestingly, PACAP27 and PACAP38 but not VIP were able to upregulate de novo DNA synthesis in testis nuclei and that this effect was abolished by PACAP(6-38). These results support the presence of PAC1 receptors at the nuclear membrane and raise questions about their role in the biological activity of the peptide. These findings contribute to the characterization of PACAP as an intracrine factor and suggest that these intracellular PAC1 binding sites, probably associated with specific biological activities, should be taken into account during the development of PACAP-based drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号