首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of the length and width of the ligament of the head of femur (ligamentum teres) in 140 normal human fetuses between 12 weeks and term provides limits for growth changes in this structure. These observations provide no morphological evidence of a significant difference between males and females, or between the right and left sides, to explain the female and left hip preponderance reported in congenital hip disease. The ligament is shown to be variable in length, width, and shape, and it is not a distinctly linear structure through linearity may increase with age. Tests of femoral head mobility support the opinion that this ligament must play a role in fetal and neonatal hip joint stability. Weak correlation only was demonstrated between the ligament variables and acetabular depth, which suggests that ligament shape and socket shape are not closely related. Comparison of measurements from normal and 12 dysplastic or subluxated joints provides no evidence to support previous observations that this structure is unusually long in abnormal hip joints which are not frankly dislocated.  相似文献   

2.
Numerous supporting structures assist in the retention of the femoral head within the acetabulum of the normal hip joint including the capsule, labrum, and ligament of the femoral head (LHF). During total hip arthroplasty (THA), the LHF is often disrupted or degenerative and is surgically removed. In addition, a portion of the remaining supporting structures is transected or resected to facilitate surgical exposure. The present study analyzes the effects of LHF absence and surgical dissection in THA patients. Twenty subjects (5 normal hip joints, 10 nonconstrained THA, and 5 constrained THA) were evaluated using fluoroscopy while performing active hip abduction. All THA subjects were considered clinically successful. Fluoroscopic videos of the normal hips were analyzed using digitization, while those with THA were assessed using a computerized interactive model-fitting technique. The distance between the femoral head and acetabulum was measured to determine if femoral head separation occurred. Error analysis revealed measurements to be accurate within 0.75mm. No separation was observed in normal hips or those subjects implanted with constrained THA, while all 10 (100%) with unconstrained THA demonstrated femoral head separation, averaging 3.3mm (range 1.9-5.2mm). This study has shown that separation of the prosthetic femoral head from the acetabular component can occur. The normal hip joint has surrounding capsuloligamentous structures and a ligament attaching the femoral head to the acetabulum. We hypothesize that these soft tissue supports create a passive, resistant force at the hip, preventing femoral head separation. The absence of these supporting structures after THA may allow increased hip joint forces, which may play a role in premature polyethylene wear or prosthetic loosening.  相似文献   

3.
Seventy-four acetabula from a total of 140 normal human fetuses, obtained from abortions and deaths in the prenatal period, were used. The fetuses ranged from 9.1 to 40 cm in crown-rump length and are believed to be between 12 weeks and term. Acetabula were decalcified embedded in paraffin or celloidin, sectioned, and stained using conventional histologic techniques. Sections from the superior one-quarter of the acetabulum were examined for the initial appearance and later spread of osseous tissue. Throughout the fetal period bone was present only in the floor of the acetabulum and did not extend into the socket walls. Ossification was detected initially more posteriorly in the socket floor, and at all ages, ossification was more prominent on the ischial side of the socket. Despite the lack of osseous tissue a well-formed hyaline cartilage socket was present. The fetal labrum was composed of fibrous tissue with the density of fibers increasing with age. Typical-appearing chondrocytes were detected at only the inner articular margin of the labrum. Contributing from one-fifth to one-half of the socket depth, the labrum may play a greater role in containing the femoral head at birth than it does in the mature joint. In seven acetabula, from joints that were neither subluxated nor dislocated, an area of areolar tissue with capillaries was detected at the hyaline cartilage-labrum junction. Such defects may weaken the labrum and contribute to neonatal hip instability.  相似文献   

4.
Saurischian dinosaurs evolved seven orders of magnitude in body mass, as well as a wide diversity of hip joint morphology and locomotor postures. The very largest saurischians possess incongruent bony hip joints, suggesting that large volumes of soft tissues mediated hip articulation. To understand the evolutionary trends and functional relationships between body size and hip anatomy of saurischians, we tested the relationships among discrete and continuous morphological characters using phylogenetically corrected regression. Giant theropods and sauropods convergently evolved highly cartilaginous hip joints by reducing supraacetabular ossifications, a condition unlike that in early dinosauromorphs. However, transitions in femoral and acetabular soft tissues indicate that large sauropods and theropods built their hip joints in fundamentally different ways. In sauropods, the femoral head possesses irregularly rugose subchondral surfaces for thick hyaline cartilage. Hip articulation was achieved primarily using the highly cartilaginous femoral head and the supraacetabular labrum on the acetabular ceiling. In contrast, theropods covered their femoral head and neck with thinner hyaline cartilage and maintained extensive articulation between the fibrocartilaginous femoral neck and the antitrochanter. These findings suggest that the hip joints of giant sauropods were built to sustain large compressive loads, whereas those of giant theropods experienced compression and shear forces.  相似文献   

5.
Osteoarthritis is the most common degenerative disease of joints like the hip and the trapeziometacarpal joint (rhizarthrosis). In this in vitro study, we compared the chondrogenesis of chondrocytes derived from the trapezium and the femoral head cartilage of osteoarthritic patients to have a deeper insight on trapezium chondrocyte behavior as autologous cell source for the repair of cartilage lesions in rhizarthrosis. Chondrocytes collected from trapezium and femoral head articular cartilage were cultured in pellets and analyzed for chondrogenic differentiation, cell proliferation, glycosaminoglycan production, gene expression of chondrogenic and fibrous markers, histological and immunohistochemical analyses. Our results showed a higher cartilaginous matrix deposition and a lower fibrocartilaginous phenotype of the femoral chondrocytes with respect to the trapezium chondrocytes assessed by a higher absolute glycosaminoglycan and type II collagen production, thus demonstrating a superior chondrogenic potential of the femoral with respect to the trapezium chondrocytes. The differences in chondrogenic potential between trapezium and femoral head chondrocytes confirmed a lower regenerative capability in the trapezium than in the femoral head cartilage due to the different environment and loading acting on these joints that affects the metabolism of the resident cells. This could represent a limitation to apply the cell therapy for rhizoarthrosis.  相似文献   

6.
The transmission of load through the human hip joint   总被引:8,自引:0,他引:8  
This paper describes the results of loading experiments carried out on human hip joints. The unloaded surfaces of the femoral head and the acetabulum are slightly incongruous. The location and magnitude of the contact areas between the surfaces therefore depend on the magnitude and direction of the applied load. The contact areas were determined experimentally for a variety of loads typical of normal walking. Two distinct contact areas were found on the anterior and posterior aspects of the acetabulum at light loads, gradually merging with increasing load until, at a certain transition load, the dome of the acetabulum comes into contact and contact is then complete. The value of the transition load depends on the rate of loading, due to creep of the cartilage, and was found to vary from 50 per cent of body weight in young specimens to 25 per cent of body weight for elderly specimens for rates of loading typical of normal walking. Thus, the dome of the acetabulum is out of contact for a substantial portion of the swing phase of normal walking.

The analysis of a much simplified model of the hip joint is presented. The dependence of contact area on load is demonstrated, but also a method of determining the transition load for complete contact from the load/deflection relation for the hip is suggested. The values of the transition load quoted above were obtained by this method. The analysis further indicates that the distribution of pressure between the articular surfaces depends critically on the distribution of cartilage thickness throughout the joint. It is suggested that the distribution of cartilage thickness is such as to lead to a state of uniform pressure at the upper end of the physiological load range. Some experimental evidence is presented in support of this suggestion.

It is concluded that the function of joint incongruity is to allow the articular surfaces to come out of contact at light loads so that the cartilage may be exposed to synovial fluid for the purposes of nutrition and lubrication. At large loads, the distribution of cartilage thickness ensures that a state of hydrostatic pressure is achieved in order that cartilage, with a large fluid content, may transmit large pressures without flow and consequent loss of its integrity.  相似文献   


7.

Introduction

Few data are available concerning structural changes at the hip observed by magnetic resonance imaging (MRI) in people with or without hip osteoarthritis (OA). The aim of this study was to compare cartilage volume and the presence of cartilage defects and bone marrow lesions (BMLs) in participants with and without diagnosed hip OA.

Methods

Femoral head cartilage volume was measured by MRI for 141 community-based persons with no diagnosed hip OA, and 19 with diagnosed hip OA. Cartilage defects and BMLs were regionally scored at the femoral head and acetabulum.

Results

Compared with those without diagnosed hip OA, people with diagnosed hip OA had less femoral head cartilage volume (1763 mm3 versus 3343 mm3; p <0.001) and more prevalent cartilage defects and BMLs (all p ≤0.05) at all sites other than the central inferomedial region of the femoral head. In those with no diagnosed hip OA, cartilage defects in the anterior and central superolateral region of the femoral head were associated with reduced femoral head cartilage volume (all p ≤0.02). Central superolateral BMLs at all sites were associated with reduced femoral head cartilage volume (all p ≤0.003), with a similar trend occurring when BMLs were located in the anterior region of the hip (all p ≤0.08).

Conclusions

Compared with community-based adults with no diagnosed hip OA, people with diagnosed hip OA have less femoral head cartilage volume and a higher prevalence of cartilage defects and BMLs. For people with no diagnosed hip OA, femoral head cartilage volume was reduced where cartilage defects and/or BMLs were present in the anterior and central superolateral regions of the hip joint. Cartilage defects and BMLs present in the anterior and central superolateral regions may represent early structural damage in the pathogenesis of hip OA.  相似文献   

8.
In morphological analysis of the femur, the hip joint centre (HJC) is generally determined using a 3D model of the femoral head based on medical images. However, the portion of the image selected to represent the femoral head may influence the HJC. We determined if this influence invalidates the results of three HJC calculation methods, one of which we introduce here.

To isolate femoral heads in cadaver CT images, thresholds were applied to the distance between femur and acetabulum models. The sensitivity of the HJC to these thresholds and the differences between methods were quantified.

For thresholds between 6 and 9 mm and healthy hips, differences between methods were below 1 mm and all methods were insensitive to threshold changes. For higher thresholds, the fovea capitis femoris disturbed the HJC. In two deformed hips, the new method performed superiorly. We conclude that for normal hips all methods produce valid results.  相似文献   

9.
In morphological analysis of the femur, the hip joint centre (HJC) is generally determined using a 3D model of the femoral head based on medical images. However, the portion of the image selected to represent the femoral head may influence the HJC. We determined if this influence invalidates the results of three HJC calculation methods, one of which we introduce here. To isolate femoral heads in cadaver CT images, thresholds were applied to the distance between femur and acetabulum models. The sensitivity of the HJC to these thresholds and the differences between methods were quantified. For thresholds between 6 and 9?mm and healthy hips, differences between methods were below 1?mm and all methods were insensitive to threshold changes. For higher thresholds, the fovea capitis femoris disturbed the HJC. In two deformed hips, the new method performed superiorly. We conclude that for normal hips all methods produce valid results.  相似文献   

10.
IntroductionThe mechanism by which obesity increases the risk of hip osteoarthritis is unclear. One possibility may be by mediating abnormalities in bony geometry, which may in turn be associated with early structural abnormalities, such as cartilage defects and bone marrow lesions.MethodsOne hundred and forty one older adults with no diagnosed hip osteoarthritis had weight and body mass index measured between 1990 and 1994 and again in 2009 to 2010. Acetabular depth and lateral centre edge angle, both measures of acetabular over-coverage, as well as femoral head cartilage volume, cartilage defects and bone marrow lesions were assessed with 3.0 T magnetic resonance imaging performed in 2009 to 2010.ResultsCurrent body mass index, weight and weight gain were associated with increased acetabular depth and lateral centre edge angle (all P ≤ 0.01). For every 1 mm increase in acetabular depth, femoral head cartilage volume reduced by 59 mm3 (95% confidence interval (CI) 20 mm3 to 98 mm3, P < 0.01). Greater acetabular depth was associated with an increased risk of cartilage defects (odds ratio (OR) 1.22, 95% CI 1.03 to 1.44, P = 0.02) and bone marrow lesions (OR 1.29, 95% CI 1.01 to 1.64, P = 0.04) in the central region of the femoral head. Lateral centre edge angle was not associated with hip structure.ConclusionsObesity is associated with acetabular over-coverage. Increased acetabular depth, but not the lateral centre edge angle, is associated with reduced femoral head cartilage volume and an increased risk of cartilage defects and bone marrow lesions. Minimising any deepening of the acetabulum (for example, through weight management) might help to reduce the incidence of hip osteoarthritis.  相似文献   

11.
A complex of traits in the femur and pelvis of Homo ereclus and early “erectus-like” specimens has been described, but never satisfactorily explained. Here the functional relationships between pelvic and femoral structure in humans are explored using both theoretical biomechanical models and empirical tests within modern samples of diverse body form (Pecos Amerindians, East Africans). Results indicate that a long femoral neck increases mediolateral bending of the femoral diaphysis and decreases gluteal abductor and hip joint reaction forces. Increasing biacetabular breadth along with femoral neck length further increases M-L bending of the femoral shaft and maintains abductor and joint reaction forces at near “normal” levels. When compared to modern humans, Homo erectus and early “erectus-like” specimens are characterized by a long femoral neck and greatly increased M-L relative to A-P bending strength of the femoral shaft, coupled with no decrease in hip joint size and a probable increase in abductor force relative to body size. All of this strongly suggests that biacetabular breadth as well as femoral neck length was relatively large in early Homo. Several features preserved in early Homo partial hip bones also indicate that the true (lower) pelvis was very M-L broad, as well as A-P narrow. This is similar to the lower pelvic shape of australopithecines and suggests that nonrotational birth, in which the newborn's head is oriented transversely through the pelvic outlet, characterized early Homo as well as Australopithecus. Because M-L breadth of the pelvis is constrained by other factors, this may have limited increases in cranial capacity within Homo until rotational birth was established during the late Middle Pleistocene. During or after the transition to rotational birth biacetabular breadth decreased, reducing the body weight moment arm about the hip and allowing femoral neck length (abductor moment arm) to also decrease, both of which reduced M-L bending of the proximal femoral shaft. Variation in femoral structural properties within early Homo and other East African Early Pleistocene specimens has several taxonomic and phylogenetic implications. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed.  相似文献   

13.
The interaction between the semitendinosus muscle and both hip and knee joint angles was examined in the frog (Rana pipiens) hindlimb. Sarcomere length was measured by laser diffraction in passive muscle during hip and knee rotation. A model was then developed to predict semitendinosus sarcomere length as a function of both hip and knee flexion angle. Based on published frog muscle fiber length-tension [Gordon, A. M. et al., J. Physiol. 184, 170-192 (1966)] and force-velocity [Edman, K. A. P., J. Physiol. 291, 143-159 (1979)] properties, and published joint angles during hopping [Calow, L. J. and Alexander, R. McN., J. Zool. (Lond.) 171, 293-321 (1973)], muscle sarcomere length, force and hip and knee torque during a hop were predicted. The semitendinosus muscle generally operated on the descending limb of the length-tension curve at normal joint angle combinations. The model predicted that, during a single coordinated movement, a period of sarcomere shortening (concentric) was followed by a period of sarcomere lengthening (eccentric). Based on calculated torque profiles at the hip and knee joints, this study suggested that the semitendinosus muscle probably functions more as a hip extensor than a knee flexor. In addition, based on the nature of the shortening-lengthening cycle, the semitendinosus may act to mechanically link the force of knee extension to hip extension.  相似文献   

14.
Estimation of the hip joint contact area and pressure distribution during activities of daily living is important in predicting joint degeneration mechanism, prosthetic implant wear, providing biomechanical rationales for preoperative planning and postoperative rehabilitation. These biomechanical data were estimated utilizing a generic hip model, the Discrete Element Analysis technique, and the in vivo hip joint contact force data. The three-dimensional joint potential contact area was obtained from the anteroposterior radiograph of a subject and the actual joint contact area and pressure distribution in eight activities of daily living were calculated. During fast, normal, and slow walking, the peak pressure of moderate magnitude was located at the lateral roof of the acetabulum during mid-stance. In standing up and sitting down, and during knee bending, the peak pressures were located at the edge of the posterior horn and the magnitude of the peak pressure during sitting down was 2.8 times that of normal walking. The peak pressure was found at the lateral roof in climbing up stairs which was higher than that in going down stairs. These results can be used to rationalize rehabilitation protocols, functional restrictions after complex acetabular reconstructions, and prosthetic component wear and fatigue test set up. The same model and analysis can provide further insight to soft tissue loading and pathology such as labral injury. When the pressure distribution on the acetabulum is inverted onto the femoral head, prediction of subchondral bone collapse associated with avascular necrosis can be achieved with improved accuracy.  相似文献   

15.
This note describes a mathematical method for the calculation of surface area of the femoral head covered ('contained') by the acetabulum as a time-dependent function. It uses displacement vectors from the center of rotation of the hip joint to the femoral joint surface, and rotates these vectors in small increments to simulate the desired motion. At each interval, the vectors are tested to determine whether they lie within the coverage area of the acetabulum. The result is a containment density plot which displays coverage area as a function of time. The general method is used in a variety of clinically important situations, and an example of its use in the study of abduction bracing is described.  相似文献   

16.
Moment arms are important for understanding muscular behavior and for calculating internal muscle forces in musculoskeletal simulations. Biarticular muscles cross two joints and have moment arms that depend on the angle of both joints the muscles cross. The tendon excursion method was used to measure the joint angle-dependence of hamstring (biceps femoris, semimembranosus and semitendinosus) moment arm magnitudes of the feline hindlimb at the knee and hip joints. Knee angle influenced hamstring moment arm magnitudes at the hip joint; compared to a flexed knee joint, the moment arm for semimembranosus posterior at the hip was at most 7.4 mm (25%) larger when the knee was extended. On average, hamstring moment arms at the hip increased by 4.9 mm when the knee was more extended. In contrast, moment arm magnitudes at the knee varied by less than 2.8 mm (mean=1.6 mm) for all hamstring muscles at the two hip joint angles tested. Thus, hamstring moment arms at the hip were dependent on knee position, while hamstring moment arms at the knee were not as strongly associated with relative hip position. Additionally, the feline hamstring muscle group had a larger mechanical advantage at the hip than at the knee joint.  相似文献   

17.
The goal of this study was to investigate the influence of the acetabular labrum on the consolidation, and hence the solid matrix strains and stresses, of the cartilage layers of the hip joint. A plane-strain finite element model was developed, which represented a coronal slice through the acetabular and femoral cartilage layers and the acetabular labrum. Elements with poroelastic properties were used to account for the biphasic solid/fluid nature of the cartilage and labrum. The response of the joint over an extended period of loading (10,000s) was examined to simulate the nominal compressive load that the joint is subjected to throughout the day. The model demonstrated that the labrum adds an important resistance in the flow path of the fluid being expressed from the cartilage layers of the joint. Cartilage layer consolidation was up to 40% quicker in the absence of the labrum. Following removal of the labrum from the model, the solid-on-solid contact stresses between the femoral and acetabular cartilage layers were greatly increased (up to 92% higher), which would increase the friction between the joint surfaces. In the absence of the labrum, the centre of contact shifted towards the acetabular rim. Subsurface strains and stresses were much higher without the labrum, which could contribute to fatigue damage of the cartilage layers. Finally, the labrum provided some structural resistance to lateral motion of the femoral head within the acetabulum, enhancing joint stability and preserving joint congruity.  相似文献   

18.
Nine patients with extensive wounds of the hip joint due to chronic infection following total hip arthroplasty or internal fixation of fractures of the femoral head and neck have been treated by serial radical debridements to remove infected bone, contaminated remnants of bone cement, and the surrounding fibrotic soft tissues. The resultant deep cavity extending down to the acetabulum has then been obliterated with either pedicled muscle flaps or free muscle flaps. Subcutaneous or transpelvic transposition of rectus abdominis muscle flaps is preferred for smaller defects, but only the free latissimus dorsi muscle flap provides sufficient volume of tissue to obliterate the more extensive hip defects. Systemic antibiotics have been continued only for a short-term course of 14 days postoperatively. There has been no recurrence of infection, with follow-up ranging between 6 months and 3 1/4 years. One patient has undergone reimplantation of a second custom hip prosthesis into the vascularized bed of a free latissimus dorsi muscle flap.  相似文献   

19.
The range of motion (ROM) of total hip prostheses is influenced by a number of parameters. An insufficient ROM may cause impingement, which may result in subluxation, dislocation or material failure of the prostheses. In a three-dimensional CAD simulation, the position of the centre of rotation and the CCD angle of the stem were investigated. Displacement of the centre of rotation of the femoral head may be due to wear (PE cups) or to the design of the prosthesis (ceramic cups). Stems of widely differing design have been developed and implanted. The results of the present study demonstrate that the ROM is clearly reduced by increasing penetration of the femoral head. At an inclination angle of 45 degrees, a depth of penetration of 2 mm restricts flexion by about 15 degrees, and a depth of penetration of 3 mm by about 30 degrees. At smaller angles of inclination the ROM is reduced and flexion and abduction are associated with an increased risk of impingement. With steeper acetabular cup inclinations, the risk of impingement decreases, but dislocation, the risk of rim fractures (ceramic cups), and wear and penetration rates (PE cups) increase. The CCD angle of the stem should be oriented to the anatomical situation. At high CCD angles (> 135 degrees), flexion is clearly limited, in particular when there is penetration of the femoral head. For modern total hip arthroplasty, prosthetic systems characterised by precise positioning of components, minimum wear, slightly recessed inserts, and appropriate CCD angles should be used.  相似文献   

20.
In endoprosthetics alumina ceramic femoral heads have been established for many years and their outstanding wear characteristics are scientifically proven. The taper connection between the hard but brittle ceramic head and the metallic stem must be performed by the operating surgeon intraoperatively. Thereby it is left to the surgeon to interpret imprecise and strongly deviating instructions given from manufacturer to manufacturer. This study clarifies the enormously large variations of interpretation in the clinical everyday life based on interviews and force measurements during handling when assembling. In comparable situations the axial cone setting forces, applied by a total of 39 operating surgeons from German hospitals, varied between 273 N and 7848 N. An additional coupling strength examination in the laboratory shows that torque loadings necessary for loosening several cone connection designs are in the range of those occurring under usual in vivo situations. This leads to the conclusion that for low-force-connected cone tapers joint friction of the artificial hip joint can cause a rotation and thus a loosening of the ceramic head of the implant neck during everyday activities. The authors proclaim the urgent necessity for clear handling references and the supply of a reproducibly safe taper lock method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号