首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
果蝇干细胞研究进展   总被引:1,自引:0,他引:1  
本文主要介绍了果蝇五种干细胞,包括生殖干细胞、神经干细胞、造血干细胞、小肠干细胞、肾干细胞及其微环境(niche)的组成成份;简述了五种干细胞系统对应的分子标记;最后重点介绍了调控每种干细胞系统的信号通路。  相似文献   

2.
Adipose-derived stem cells (ASCs) are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue. Isolated ASCs are typically expanded in monolayer on standard tissue culture plastic with a basal medium containing 10% fetal bovine serum. However, recent data suggest that altering the monolayer expansion conditions by using suspension culture plastic, adding growth factors to the medium, or adjusting the seeding density may affect the self-renewal rate, multipotency, and lineage-specific differentiation potential of the ASCs. We hypothesized that variation in any of these expansion conditions would influence the chondrogenic potential of ASCs. ASCs were isolated from human liposuction waste tissue and expanded through two passages with different tissue culture plastic, feed medium, and cell seeding densities. Once expanded, the cells were cast in an agarose gel and subjected to identical chondrogenic culture conditions for 7 days, at which point cell viability, radiolabel incorporation, and gene expression were measured. High rates of matrix synthesis upon chondrogenic induction were mostly associated with smaller cells, as indicated by cell width and area on tissue culture plastic, and it appears that expansion in a growth factor supplemented medium is important in maintaining this morphology. All end-point measures were highly dependent on the specific monolayer culture conditions. These results support the hypothesis that monolayer culture conditions may "prime" the cells or predispose them towards a specific phenotype and thus underscore the importance of early culture conditions in determining the growth and differentiation potential of ASCs.  相似文献   

3.
成人中枢神经系统存在着一定量的神经干细胞,其具有两大关键能力;自我更新和多向分化潜能。缺血性脑卒中是一种由于由脑血流的缺失或减少引起的脑动脉闭塞,进而导致脑组织梗死的脑血管疾病。虽然对于脑损伤的药物治疗已经取得了一定的成果,但目前以干细胞为基础的治疗方法仍成为了研究热点。无论是内源性神经干细胞还是外源性神经干细胞移植均可在脑损伤后向远端损伤区迁移并分化成新的神经细胞,从而在中枢神经系统疾病尤其是脑梗死后进行组织修复和功能恢复。因此在这篇综述中,我们主要探讨不同类型的干细胞对脑梗死介导的脑损伤的应用潜能,对比不同类型干细胞对缺血性脑卒中的治疗优缺点。  相似文献   

4.
多能干细胞,如胚胎干细胞(embryonic stem cells,ESCs)、诱导多能干细胞(induced pluripotent stem cells,iPSCs)和成体干细胞(adultstemcells,ASCs),是一类具有巨大潜能的独特细胞。猪作为试验材料,在遗传、代谢、生理生化及基因序列等方面较小鼠更接近于人类,正逐渐成为人类异种移植和再生医学研究的理想生物学模型。然而,目前对猪多能干细胞种类、来源、特征及机制的有限认识直接阻碍了其相关应用。该文将分别对猪ASCs的研究现状、猪类ESCs的分离培养、猪iPSCs的研究进展、多能干细胞间的联系和展望进行论述,以期为从事该领域研究的科研人员提供参考。  相似文献   

5.
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.  相似文献   

6.
7.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   

8.
In recent times, the epigenetic study of pluripotency based on cellular reprogramming techniques led to the creation of induced pluripotent stem cells. It has come to represent the forefront of a new wave of alternative therapeutic approaches in the field of stem cell therapy. Progress in drug development has saved countless lives, but there are numerous intractable diseases where curative treatment cannot be achieved through pharmacological intervention alone. Consequently, there has been an unfortunate rise in incidences of organ failures, degenerative disorders and cancers, hence novel therapeutic interventions are required. Stem cells have unique self-renewal and multilineage differentiation capabilities that could be harnessed for therapeutic purposes. Although a number of mature differentiated cells have been characterized in vitro, few have been demonstrated to function in a physiologically relevant context. Despite fervent levels of enthusiasm in the field, the reality is that other than the employment of haematopoietic stem cells, many other therapies have yet to be thoroughly proven for their therapeutic benefit and safety in application. This review shall focus on a discussion regarding the current status of stem cell therapy, the issues surrounding it and its future prospects with a general background on the regulatory networks underlying pluripotency.  相似文献   

9.
On February 11, 2020, the World Health Organization officially announced the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as an emerging recent pandemic illness, which currently has approximately taken the life of two million persons in more than 200 countries. Medical, clinical, and scientific efforts have focused on searching for new prevention and treatment strategies. Regenerative medicine and tissue engineering focused on using stem cells (SCs) have become a promising tool, and the regenerative and immunoregulatory capabilities of mesenchymal SCs (MSCs) and their exosomes have been demonstrated. Moreover, it has been essential to establishing models to reproduce the viral life cycle and mimic the pathology of COVID-19 to understand the virus's behavior. The fields of pluripotent SCs (PSCs), induced PSCs (iPSCs), and artificial iPSCs have been used for this purpose in the development of infection models or organoids. Nevertheless, some inconveniences have been declared in SC use; for example, it has been reported that SARS-CoV-2 enters human cells through the angiotensin-converting enzyme 2 receptor, which is highly expressed in MSCs, so it is important to continue investigating the employment of SCs in COVID-19, taking into consideration their advantages and disadvantages. In this review, we expose the use of different kinds of SCs and their derivatives for studying the SARS-CoV-2 behavior and develop treatments to counter COVID-19.  相似文献   

10.
Introduction

(1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory.

Sources of data

We reviewed the literature related to reprogramming, pluripotency and fetal stem cells.

Areas of agreement

(1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both.

Areas of controversy

(1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The “level” of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined.

Growing points

Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling.  相似文献   

11.
Stem cells possess unique biological characteristics such as the ability to self-renew and to undergo multilineage differentiation into specialized cells. Whereas embryonic stem cells (ESC) can differentiate into all cell types of the body, somatic stem cells (SSC) are a population of stem cells located in distinct niches throughout the body that differentiate into the specific cell types of the tissue in which they reside in. SSC function mainly to restore cells as part of normal tissue homeostasis or to replenish cells that are damaged due to injury. Cancer stem-like cells (CSC) are said to be analogous to SSC in this manner where tumor growth and progression as well as metastasis are fueled by a small population of CSC that reside within the corresponding tumor. Moreover, emerging evidence indicates that CSC are inherently resistant to chemo- and radiotherapy that are often the cause of cancer relapse. Hence, major research efforts have been directed at identifying CSC populations in different cancer types and understanding their biology. Many factors are thought to regulate and maintain cell stemness, including bioactive lysophospholipids such as lysophosphatidic acid (LPA). In this review, we discuss some of the newly discovered functions of LPA not only in the regulation of CSC but also normal SSC, the similarities in these regulatory functions, and how these discoveries can pave way to the development of novel therapies in cancer and regenerative medicine.  相似文献   

12.
吴昭  成璐  肖磊 《生命科学》2009,(5):658-662
胚胎干细胞(embryonic stem cells,ESC)在人类遗传病学研究、疾病模型建立、器官再生以及动物物种改良和定向变异等方面的地位是其他类型的细胞不可取代的。但是,由于实验技术和体外培养条件的限制,除了小鼠、恒河猴和人之外,大鼠、猪、牛、羊等其他哺乳动物的ES细胞系被证明很难获得。先后有多个研究小组报道了他们利用新兴的诱导多能干细胞(induced pluripotent stem cells,iPS细胞)技术成功建立大鼠和猪的iPS细胞系的研究成果。迄今为止,这两个物种是在未成功建立ES细胞系之前利用iPS技术建立多能干细胞系的成功范例。这些研究对于那些还未建立ES细胞的物种建立多能干细胞系提供了一种新的方案,也将给这些物种的胚胎干细胞的建立、基因修饰动物的产生以及人类医疗事业的促进和发展带来新的希望。  相似文献   

13.
The p53 pathway plays an essential role in tumor suppression, regulating multiple cellular processes coordinately to maintain genome integrity in both somatic cells and stem cells. Despite decades of research dedicated to p53 function in differentiated somatic cells, we are just starting to understand the complexity of the p53 pathway in the biology of pluripotent stem cells and tissue stem cells. Recent studies have demonstrated that p53 suppresses proliferation, promotes differentiation of embryonic stem (ES) cells and constitutes an important barrier to somatic reprogramming. In addition, emerging evidence reveals the role of the p53 network in the self-renewal, proliferation and genomic integrity of adult stem cells. Interestingly, non-coding RNAs, and microRNAs in particular, are integral components of the p53 network, regulating multiple p53-controlled biological processes to modulate the self-renewal and differentiation potential of a variety of stem cells. Thus, elucidation of the p53-miRNA axis in stem cell biology may generate profound insights into the mechanistic overlap between malignant transformation and stem cell biology.  相似文献   

14.
The p53 pathway plays an essential role in tumor suppression, regulating multiple cellular processes coordinately to maintain genome integrity in both somatic cells and stem cells. Despite decades of research dedicated to p53 function in differentiated somatic cells, we are just starting to understand the complexity of the p53 pathway in the biology of pluripotent stem cells and tissue stem cells. Recent studies have demonstrated that p53 suppresses proliferation, promotes differentiation of embryonic stem (ES) cells and constitutes an important barrier to somatic reprogramming. In addition, emerging evidence reveals the role of the p53 network in the self-renewal, proliferation and genomic integrity of adult stem cells. Interestingly, non-coding RNAs, and microRNAs in particular, are integral components of the p53 network, regulating multiple p53-controlled biological processes to modulate the self-renewal and differentiation potential of a variety of stem cells. Thus, elucidation of the p53-miRNA axis in stem cell biology may generate profound insights into the mechanistic overlap between malignant transformation and stem cell biology.  相似文献   

15.
16.
锂在现代精神病学中使用超过65年,其构成了双相情感障碍(BD)长期治疗的基础。锂的许多生物学特性已经被证实,包括抗病毒、血液系统和神经系统保护作用。本文系统综述了锂对造血干细胞(HSCs)、神经干细胞(NSCs)以及诱导多能干细胞(iPSCs)作用影响的研究进展及其目前已证实的分子机制。自20世纪70年代以来,锂对保持HSCs和生长因子高水平的作用已被报道。锂可以改善HSCs的归巢能力、形成菌落的能力和自我更新的能力。关于锂对神经发生影响的研究表明,锂可促进海马齿状回的干细胞增殖,并导致施旺氏细胞有丝分裂活性增强。锂被证实与神经保护和神经营养作用相关,具体作用反映在锂可改善突触的可塑性,促进细胞存活,抑制细胞凋亡等。在临床研究中发现,锂离子的治疗可增加大脑灰质的成分,尤其作用在额叶、海马和杏仁核等位置。锂对干细胞的作用涉及多条介质和信号通路,其中最重要的介质和信号通路被认为是糖原合成酶激酶-3(GSK-3)和Wnt/β-catenin通路,另外包括调节cAMP、蛋白激酶B、磷脂酰肌醇3-激酶(pi3k)和肌醇单磷酸酶(IMP)水平的信号通路等也与锂作用有紧密的联系。锂在现阶段被利用于治疗BD和降低痴呆症患病风险的临床实验中,并对神经退行性疾病发挥有益作用。除此之外,为了研究的发病机制和锂离子在其中的作用机制,从BD患者中获得的iPSCs也被广泛应用。  相似文献   

17.
On April 3, 2013, the fourth biennial StemCONN conference took place at the Omni Hotel at Yale in New Haven, Connecticut. This conference featured talks by scientists from across the country who are currently at the forefront of stem cell research, as well as talks by Edison Liu, President and CEO of the Jackson Laboratory, and Jonathan Rotherberg, PhD, a Yale alumnus and Ion Torrent Systems Founder and CEO. The conference highlighted the importance of stem cell research to both science and medicine and emphasized the necessity of continued government funding for this research, both in Connecticut and nationwide.  相似文献   

18.
《Cell Stem Cell》2020,26(3):377-390.e6
  1. Download : Download high-res image (197KB)
  2. Download : Download full-size image
  相似文献   

19.
吴海歌  吴晨  姚子昂  高晨慧  李倩 《生命科学》2014,(10):1067-1072
肿瘤干细胞是指存在于肿瘤组织中的具有干细胞特性,即能够多向分化和自我更新的一类细胞群。随着肿瘤干细胞概念的提出,乳腺癌干细胞成为当今科研领域的一个研究热点。因此,了解如何分选乳腺癌干细胞及如何维持其"干性"对治疗及预防乳腺癌具有至关重要的意义。主要从乳腺癌干细胞分选、相关信号通路、上皮-间充质转换(EMT)等方面进行综述。  相似文献   

20.
Stem cells: is there a future in plastics?   总被引:3,自引:0,他引:3  
The concept that ostensibly tissue-specific stem cells can give rise to cells of heterologous lineages has gained support from studies using purified hematopoietic stem cells and sensitive donor-cell tracking methods. The ability to exploit these findings in clinical settings will probably depend on new insights into the mechanisms by which such stem cells or their progeny migrate to sites of organ damage and differentiate to cell types competent to participate in tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号