首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of morphological variants of females of Pratylenchus penetrans, P. neglectus, and P. crenatus on the growth of three vegetables was studied. Variants were characterized by having either a smooth or crenate tail terminus. Pea was inoculated with variants of P. penetrans, one female per seedling, and grown at light intensities ranging from 1,350 to 21,600 lux in a series of five experiments. Only crenate-tailed females of P. penetrans suppressed the growth of pea and only when pea was grown at 3,900 lux. Radish was inoculated with morphological variants of P. penetrans, P. neglectus, and P. crenatus, four females per seedling, and grown at 3,900 lux in two experiments. Again, truly creuate-tailed females of P. penetrans inhibited growth. The two variants of P. penetrans had a similar infectivity, greater than that of the other two species of Pratylenchus. Only crenate-tailed P. penetrans reproduced on radish. Onion was inoculated with variants of P. penetrans and P. crenatus, four females per seedling, and grown at 14 C at 12,900 lux. Again, only crenate-tailed P. penetrans inhibited growth. The variants of P. penetrans had a similar infectivity, greater than that of P. crenatus. Neither species reproduced on onion at low temperatures.  相似文献   

2.
Alfalfa is a host of Pratylenchus penetrans and P. neglectus, whereas crested wheatgrass is a host of P. neglectus but not of P. penetrans. In a 120-day greenhouse experiment at 24 ñ 3 C, P. neglectus inhibited the growth of ''Lahontan'' alfalfa and ''Fairway'' crested wheatgrass. There were no differences in persistence and plant growth of alfalfa and crested wheatgrass, or reproduction of P. neglectus, in single plantings of alfalfa (AO) or crested wheatgrass (CWO), or in interplanted alfalfa and crested wheatgrass (ACW) treatments. On alfalfa, P. penetrans inhibited growth and reproduced more than did P. neglectus. Inhibition of plant growth and reproduction of P. penetrans was greater on alfalfa in AO than in ACW treatments. Pratylenchus penetrans did not reproduce on crested wheatgrass, but inhibited growth of crested wheatgrass in interplanted treatments and was avirulent in single planted treatments. Results were similar in a controlled growth chamber experiment at 15, 20, 25, and 30 C. Both nematode species inhibited alfalfa growth at all temperatures, and P. penetrans was more virulent than was P. neglectus to alfalfa at all temperatures and treatments. Plant growth inhibition and reproduction of P. penetrans on alfalfa in single and interplanted treatments were similar at 15-20 C, but were greater in single than in interplanted treatments at 25-30 C. Pratylenchus penetrans was avirulent to crested wheatgrass in the single planted treatments at all temperatures, but inhibited growth of crested wheatgrass in interplanted treatments at 20-30 C. Plant growth and reproduction of P. neglectus on crested wheatgrass was similar in single and interplanted treatments at 20-30 C and 15-30 C, respectively.  相似文献   

3.
Attraction of Ditylenchus dipsaci and Pratylenchus penetrans to a temperature gradient was tested. Heating wires, infrared radiations and germinating alfalfa seeds were used to create a temperature gradient as small as 0.033 C/cm in agar. P. penetrans, D. dipsaci, and Tylenchorhynchus claytoni responded to a temperature gradient of 0.033 C over a 4-cm distance from the heat source. Trichodorus christiei and Xiphinema arnericanum showed no response. Individuals of P. penetrans oriented their heads towards the heat source and moved directly towards it from a 1-cm distance within 10 rain. When the heat was turned off the nematodes dispersed, but when the heat was turned on again, they reassembled. Heat from germinating alfalfa seeds, in the absence of CO₂, attracted P. penetrans. Carbon dioxide emanating from germinating alfalfa seeds failed to attract them in the absence of heat, even after 24 hr.  相似文献   

4.
''Vernal'' alfalfa was grown for 30 weeks in nematode-free soil and in soil infested with Pratylenchus penetrans. Charlottetown fine sandy loam soil was used at its pH of 4.4 and at adjusted reactions of 5.2, 6.4 and 7.3. Nematode reproduction was significantly greater at pit 5.2 and 6.4 and was not related to alfalfa root production over the full pH range studied. A significant nematode infestation X soil pit interaction on forage yield was recorded. Nematode infestation significantly decreased forage yields at ptt 5.2 and 6.4 but not at pH 4.4 and 7.3.  相似文献   

5.
A field study was made of the effects of a residual nematicide (phenamiphos), a fumigant (methyl bromide), and fallowing on the number of root lesion nematodes (Pratylenchus penetrans), forage yields of alfalfa, and the occurrence of Fusarium spp. in plant roots and soil. Fallowing controlled nematodes initially, but by the end of the second growing season, nematode numbers were as high as in plots which had grown a nematode-susceptible crop. Forage yield was greater in fallowed plots only for the first cut in the year after seeding. Fusarium in alfalfa roots and soil was not reduced by fallowing. Phenamiphos reduced nematode numbers, increased forage yields in 2 of 4 years, and reduced Fusarium infections of taproots. Soil fumigation with methyl bromide gave the best control of nematodes and Fusarium and gave significantly higher forage yields for the 4 years of study following fumigation. The 34% increase in alfalfa yield from fumigated plots over the 4 years indicates that the yield of alfalfa is being reduced significantly by microorganisms. The study does not establish the relative contributions of the root lesion nematodes and Fusarium spp. to the reduction.  相似文献   

6.
Invasion of 2-day-old seedlings of ''Buffalo'' alfalfa and ''Kenland'' red clover by larvae of M. incognita and adults of P. penetrans, during 1-3 day periods of incubation at 24 C, was investigated in 50-mm petri dishes on 1% agar. Penetration by both nematodes increased arithmetically with increased numbers in inocula. P. penetrans invaded alfalfa more readily than red cover, but M. incognita invaded red clover more readily than alfalfa. Both nematodes inhibited root-elongation of alfalfa more than that of red clover. In combinations of 10 and 50 of both nematodes, invasion of both plants by both nematodes was the same as for each nematode alone. Penetration by M. incognita into alfalfa, but not into red clover, was significantly reduced when combinations of 50 M. incognita and 200 P. penetrans were inoculated simultaneously. In the presence of large numbers of entrant P. penetrans in both plants, penetration by M. incognita was highly significantly reduced. Penetration by P. penetrans was unaffected in the reciprocal situations.  相似文献   

7.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

8.
Roots of seedlings of red clover and alfalfa growing on 10⁻¹ Hoagland and Arnon solution agar were inoculated with various combinations of Meloidogyne incognita and Pratylenchus penetrans. Egg-laying by P. penetrans decreased as the number of nematodes, the ratio of entrant M. incognita to entrant P. penetrans, and the priority of invasion of roots by M. incognita increased. Embryogeny and hatching of eggs of P. penetrans, and development of larvae of M. incognita, were not affected. In red clover, the greatest red uction occurred when there were 65 entrant nematodes, the ratio of M. incognita:P. penetrans was 4:1 and M. incognita was inoculated four days prior to P. penetrans. In alfalfa, the less-favorable host for both nematodes, the greatest reduction occurred when there were 45 entrant nematodes, the ratio of M. incognita:P. penetrans was 2:1, and M. incognita was inoculated 4 days prior to P. penetrans.  相似文献   

9.
A polymer sticker was used as a coating in which oxamyl was applied to seeds of alfalfa cultivar Saranac for the control of Pratylenchus penetrans and Meloidogyne hapla. The sticker, diluted 1:1 (sticker:water) to 1:5, delayed seedling emergence during the first 4 days after planting. By day 13, however, emergence from all sticker treatments was comparable to the control. Shoot growth of seedlings at day 21 was less than that of the control only from seeds coated with a 1:1 dilution; root growth and nodulation were not affected. Sticker-coated seeds absorbed 30-58% as much water in 3.5 hours as was absorbed by uncoated seeds. Oxamyl concentrations of 40-160 mg/ml in a 1:5 sticker : water mixture had no adverse affect on seedling emergence, growth, and nodulation over 3 weeks. Oxamyl at 160 mg/ml was more effective against P. penetrans than M. hapla. Growth of alfalfa in P. penetrans-infested soil was greater than that of the control in each sampling for 11 weeks. The reduction of number of P. penetrans in soil and roots moderated slowly over 11 weeks from 90% to 60%. Shoot and root growth of alfalfa from oxamyl-coated seed in M. hapla-infested soil were greater than those of the control for 7 and 11 weeks, respectively. The reduction in the number of M. hapla in the soil and roots changed from 80% at 7 weeks to 15% at 11 weeks.  相似文献   

10.
Endoparasitic nematode populations are usually measured separately for soil and roots without a determination of the quantitative relation between soil and root population components. In this study, Pratylenchus penetrans populations in peppermint soil, roots, and rhizomes were expressed as the density within a standardized core consisting of 500 g dry soil plus the roots and rhizomes contained therein. Populations of Paratylenchus sp. and Criconemella xenoplax in 500 g dry soil were also determined, thus measuring the total plant-parasitic nematode population associated with the plant. Mean wet root weight per standard core peaked in spring and again in late summer and was lowest early in the growing season and in early fall. Pratylenchus penetrans populations peaked 4 to 6 weeks after root weight peaks. The percentage of the total population in roots reached 70% to 90% in early April, decreased to 20% to 40% in August, and returned to higher percentages during the winter. Rhizomes never contained more than a minor proportion of the population. Mean Paratylenchus sp. populations increased through spring and peaked in late August. Mean C. xenoplax populations fluctuated, peaking in August or September. Populations of all parasitic species were lowest during winter. Evaluation using the standard core method permits assessment of the total P. penetrans population associated with the plant and of changes in root weight as well as the seasonal distribution of P. penetrans.  相似文献   

11.
Oxamyl was applied to both uncut and cut potato tubers in aqueous solutions of 1,000 to 32,000 μg/ml. Emergence in greenhouse pots was delayed for a day or more after soaking cut tuber pieces in 32,000 μg/ml. After 10 weeks plant growth was greater, relative to the control, when Pratylenchus penetrans-infested soil was planted with cut tubers soaked for 20 minutes in 32,000 μg/ml. Soaking for 40 minutes did not increase nematode control nor affect plant growth. Oxamyl applied to tubers at 1,000 μg/ml reduced the numbers of P. penetrans in the soil by 20% and in the roots by 35%; at 32,000 μg/ml, the numbers of P. penetrans in the soil were reduced by 73-86% and in the roots by 86-97%. The numbers of P. penetrans did not increase in the roots of plants developed from cut tubers soaked in 32,000 μg/ml over a period of 10 weeks, but numbers of lesion nematodes had begun to increase in the soil.  相似文献   

12.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.  相似文献   

13.
The pathogenicity of Pratylenchus penetrans (root-lesion nematode) to Phaseolus vulgaris (navy bean) was evaluated in greenhouse experiments. Shoot and root fresh weight of cv. Sanilac plants were increased 4 and 21%, respectively, by an initial population density (Pi) of 25 P. penetrans per 100 cm³ soil. Leaf area and shoot fresh and dry weights were decreased by a Pi of 50 or more P. penetrans per 100 cm³ soil. A significant positive linear relationship existed between initial soil population densities of P. penetrans and final soil and root population densities of this nematode. Three dry bean cultivars, Sanilac, Seafarer, and Tuscola, were susceptible to P. penetrans, and yields were reduced by 43-76% when plants were exposed to a Pi of 150 P. penetrans per 100 cm³ soil. P. penetrans also reproduced on bean cultivars Saginaw, Gratiot, and Kentwood, but did not decrease bean yields, suggesting that these cultivars were tolerant to this nematode.  相似文献   

14.
Alfalfa (Medicago sativa L. cv. Saranac) seed were soaked for 20 minutes in water, acetone, or methanol containing 10 or 50 mg/ml of oxamyl (Vydate L) or coated with a 2% aqueous cellulose solution containing the same amounts of oxamyl. Seed were analyzed for oxamyl by HPLC immediately after treatment and after 9 and 26 months of storage. Oxamyl content of alfalfa seed did not decline after 26 months of storage. The effects of seed treatment on growth of alfalfa and nematode control were examined using soils infested with Pratylenchus penetrans and Meloidogyne hapla. Germination was not affected by any of the seed treatments. Twenty-one days after sowing, the total growth of alfalfa seedlings grown from seed treated with 50 mg/ml of oxamyl in P. penetrans-infested soils had increased by 62% over controls. Nodulation per pot increased by as much as 267%, and the densities of P. penetrans per gram of root were reduced by as much as 73% compared to control plants. In M. hapla-infested soils, increases in plant growth (32%) and nodulation (71%) also occurred with oxamyl-treated seeds. Root gall reduction (86%) was also substantial due to oxamyl seed treatment.  相似文献   

15.
Fifty-two alfalfa (Medicago sativa L.) clones, randomly selected from the cultivar Baker and the experimental line MNGRN-4, were evaluated for resistance (based on nematode reproduction) to Pratylenchus penetrans in growth chamber tests (25 C). Twenty-five clones, representing the range of nematodes and eggs per plant, were selected and retested. Four moderately resistant and two susceptible alfalfa clones were identified. Inheritance of resistance to P. penetrans was studied in these six clones using a diallel mating design. The S₁, Fl, and reciprocal progenies differed for numbers of nematodes and eggs per g dry root and for shoot and root weights (P < 0.05). Resistance, measured as numbers of nematodes in roots, was correlated between parental clones and their S₁ families (r = 0.94), parental clones and their half-sib families (r = 0.81), and S₁ and half-sib families (r = 0.88). General combining ability (GCA) effects were significant for nematode resistance traits. Both GCA and specific combining ability (SCA) effects were significant for plant size traits, but SCA was more important than GCA in predicting progeny plant size. Reciprocal effects were significant for both nematode resistance and plant size traits, which may slow selection progress in long-term selection programs. However, the GCA effects are large enough that breeding procedures that capitalize on additive effects should be effective in developing alfalfa cultivars with resistance to P. penetrans.  相似文献   

16.
The joint action of a plant parasitic nematode, Pratylenchus penetrans (root-lesion nematode), and an insect defoliator, Leptinotarsa decemlineata (Colorado potato beetle), on growth, development, and yield of Solanum tuberosum cv. Superior was studied in the field. Three population densities of P. penetrans were superimposed on each of three population levels of L. decemlineata. The major impact of P. penetrans on final yield was through a reduction in the number of tubers formed during tuber initiation. Defoliation by L. decemlineata increased with time as larvae advanced through successive instars and densities increased. This resulted in a significant reduction in tuber weight and numbers. Total yield of S. tuberosum was decreased by 66% with increasing population densities of L. decemlineata and 27 % with increasing densities of P. penetrans. L. decemlineata feeding did not affect soil population densities of P. penetrans. Root population densities of P. penetrans, however, were significantly (P = 0.05) higher in plants maintained beetle free than in plants grown in the presence of the beetles.  相似文献   

17.
Population growth of Pratylenchus penetrans on 13 fall and winter cover crops was studied in the greenhouse and field. All crops except oat cv. Saia supported population growth of P. penetrans in greenhouse experiments, although the response of P. penetrans to oat cv. Saia varied considerably between experiments. The mean ratio of the final population density/initial population density (Pf/Pi) after 16 weeks for P. penetrans added to a greenhouse soil mix was 0.09, whereas Pf/Pi values after 10 weeks for two experiments with naturally infested soil were 0.95 and 2.3. Although P. penetrans increased on sudangrass cv. Trudan 8 and sudangrass × sorghum hybrid cv. SS 222, subsequent incorporation of sudangrass vegetation into soil reduced P. penetrans populations to preplant levels. Field experiments were inconclusive but suggested that oat cv. Saia or rye cv. Wheeler may be better choices for winter cover than weed-contaminated fallow or other crops on P. penetrans-infested sites in the Pacific Northwest.  相似文献   

18.
Root and soil samples from 21 trees blown down in Kew Gardens during the gales of October 1987 yielded 29 species of plant parasitic nematodes. Pratylenchus crenatus, P. thornei and P. penetrans were the only endoparasitic nematodes found. The common occurrence of P. crenatus and the root ectoparasitic nematodes, such as Merlinius microdorus, Paratrichodorus pachydermus and Rotylenchus robustus reflected the predominantly sandy nature of most of the soil samples. Species rarely recorded in Britain included Hemicriconemoides pseudobrachyurum, Paralongidorus maximus and Xiphinema pseudocoxi, all of which may be introductions.  相似文献   

19.
We evaluated the ability of the nematode-pathogenic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes) to reduce root penetration and population increase of Pratylenchus penetrans on potato. Experiments were conducted at 24 C in a growth chamber. When nematodes were placed on the soil surface 8 cm from a 14-day-old potato cutting, the fungus decreased the number entering roots by 25%. To determine the effect of the fungus on population increase after the nematodes entered roots, we transplanted potato cuttings infected with P. penetrans into Hirsutella-infested and uninfested soil. After 60 days, the total number of nematodes (roots and soil) was 20 ± 4% lower in Hirsutella-infested than in uninfested soil.  相似文献   

20.
Proteases, lipase, and chitinase killed Tylenchorhynchus dubius in vitro and in soil. Tylenchorhynchus dubius was more susceptible to the enzymes than Pratylenchus penetrans. Papain was the most effective protease, and other enzymes were less effective. Heating enzymes to 80 C for 10 min greatly reduced nematicidal effectiveness. Scanning electron micrographs showed that papain and chitinase produced structural changes in the cuticle of T. dubius. Lipase removed a thin outer layer. Papain removed material filling the striata, or furrow, between the horizontal bands. When added to soil, chitinase, lipase, collagenase, and proteases (papain and bromelain) decreased motility of T. dubius populations up to 75%. Bromelain was the most active in soil against T. dubius, and collagenase was the most active in soil against P. penetrans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号