首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restriction enzyme and hybridization analyses have revealed that high-density DNA prepared from passage 15 of serially passaged herpes simplex virus type 1 (Justin) contains three major classes of modified viral DNA molecules, each composed of distinct but closely related types of repeate units. The DNA sequences within the three types of repeat units are colinear with the DNA sequences located at the right end (between coordinates 0.94 and 1.0) of the parental herpes simplex virus type 1 genome. Thus, the three types of repeat units each contain the entire repeat sequence (ac) (which brackets the unique sequences of the small [S] component of herpes simplex virus type 1 DNA) and differ only with respect to the amount of unique S sequences which they contain. The three classes of high-density DNA molecules were found to be stably propagated between passages 6 and 15 of this series.  相似文献   

2.
Ilouze M  Dishon A  Kahan T  Kotler M 《FEBS letters》2006,580(18):4473-4478
A large DNA virus, designated koi herpes virus (KHV), carp interstitial nephritis gill necrosis virus (CNGV) and Cyprinid herpes virus-3 (CyHV-3), causes massive mortality of carp. Morphologically, the virus resembles herpes viruses, but it contains a genome of ca 295 kbp, larger than that of any Herpesviridae member. Interestingly, three CyHV-3 genes, thymidylate monophosphate kinase (TmpK), ribonucleotide reductase and thymidine kinase, which are involved in deoxynucleotide tri-phosphate synthesis, resemble those of pox viruses. In addition to the TmpK gene, which is nonexistent in the genome of herpes viruses, CyHV-3 contains a B22R-like gene, exclusively expressed by pox viruses. These results raise questions on the phylogenic origin of CyHV-3.  相似文献   

3.
Molecular cloning of herpes simplex virus type 2 DNA   总被引:2,自引:0,他引:2  
Restriction enzyme HindIII digestion of the whole genome of herpes simplex virus type 2 strain 186 yielded 10 DNA fragments with molecular weights ranging from approximately 22 X 10(6) to 1.2 X 10(6), which were cloned into the HindIII site of bacterial plasmid pACYC 184. The cloned fragments were identified by hybridization to HSV-2 virus DNA and by double digestion with restriction endonucleases. The recombinant plasmids, even if they carried DNA sequences with molecular weights of more than 10(7), were efficiently replicated in E. coli HB101.  相似文献   

4.
Packaging capacity and stability of human adenovirus type 5 vectors.   总被引:28,自引:10,他引:18       下载免费PDF全文
A J Bett  L Prevec    F L Graham 《Journal of virology》1993,67(10):5911-5921
Adenovirus vectors are extensively used for high-level expression of proteins in mammalian cells and are receiving increasing attention for their potential use as live recombinant vaccines and as transducing viruses for use in gene therapy. Although it is commonly argued that one of the chief advantages of adenovirus vectors is their relative stability, this has not been thoroughly investigated. To examine the genetic stability of adenovirus type 5 vectors and in particular to examine the relationship between genetic stability and genome size, adenovirus vectors were constructed with inserts of 4.88 (herpes simplex virus type 1 gB), 4.10 (herpes simplex virus type 1 gB), or 3.82 (LacZ) kb combined with a 1.88-kb E3 deletion or with a newly generated 2.69-kb E3 deletion. The net excess of DNA over the wild-type (wt) genome size ranged from 1.13 to 3.00 kb or 3.1 to 8.3%. Analysis of these vectors during serial passage in tissue culture revealed that when the size exceeded 105% of the wt genome length by approximately 1.2 kb (4.88-kb insert combined with a 1.88-kb deletion), the resulting vector grew very poorly and underwent rapid rearrangement, resulting in loss of the insert after only a few passages. In contrast, vectors with inserts resulting in viral DNA close to or less than a net genome size of 105% of that of the wt grew well and were relatively stable. In general, viruses with genomes only slightly above 105% of that of the wt were unstable and the rapidity with which rearrangement occurred correlated with the size of the insert. These findings suggest that there is a relatively tight constraint on the amount of DNA which can be packaged into virions and that exceeding the limit results in a sharply decreased rate of virus growth. The resultant strong selection for variants which have undergone rearrangement, generating smaller genomes, is manifested as genetic instability of the virus population.  相似文献   

5.
We constructed insertion mutants of herpes simplex virus type 1 that contained a duplication of DNA sequences from the BamHI-L fragment (map units 0.706 to 0.744), which is located in the unique region of the L component (UL) of the herpes simplex virus type 1 genome. The second copy of the BamHI-L sequence was inserted in inverted orientation into the viral thymidine kinase gene (map units 0.30 to 0.32), also located within UL. A significant fraction of the progeny produced by these insertion mutants had genomes with rearranged DNA sequences, presumably resulting from intramolecular or intermolecular recombination between the BamHI-L sequences at the two different genomic locations. The rearranged genomes either had an inversion of the DNA sequence flanked by the duplication or were recombinant molecules in which different regions of the genome had been duplicated and deleted. Genomic rearrangements similar to those described here have been reported previously but only for herpes simplex virus insertion mutants containing an extra copy of the repetitive a sequence. Such rearrangements have not been reported for insertion mutants that contain duplications of herpes simplex virus DNA sequences from largely unique regions of the genome. The implications of these results are discussed.  相似文献   

6.
The complete DNA sequence of herpes B virus (Cercopithecine herpesvirus 1) strain E2490, isolated from a rhesus macaque, was determined. The total genome length is 156,789 bp, with 74.5% G+C composition and overall genome organization characteristic of alphaherpesviruses. The first and last residues of the genome were defined by sequencing the cloned genomic termini. There were six origins of DNA replication in the genome due to tandem duplication of both oriL and oriS regions. Seventy-four genes were identified, and sequence homology to proteins known in herpes simplex viruses (HSVs) was observed in all cases but one. The degree of amino acid identity between B virus and HSV proteins ranged from 26.6% (US5) to 87.7% (US15). Unexpectedly, B virus lacked a homolog of the HSV gamma(1)34.5 gene, which encodes a neurovirulence factor. Absence of this gene was verified in two low-passage clinical isolates derived from a rhesus macaque and a zoonotically infected human. This finding suggests that B virus most likely utilizes mechanisms distinct from those of HSV to sustain efficient replication in neuronal cells. Despite the considerable differences in G+C content of the macaque and B virus genes (51% and 74.2%, respectively), codons used by B virus are optimal for the tRNA population of macaque cells. Complete sequence of the B virus genome will certainly facilitate identification of the genetic basis and possible molecular mechanisms of enhanced B virus neurovirulence in humans, which results in an 80% mortality rate following zoonotic infection.  相似文献   

7.
Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus‐infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time‐consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat‐Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene‐ablated HSV but also gene knock‐in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein–Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.  相似文献   

8.
9.
Recombinant TK- vaccinia viruses containing the pBR322 sequence inserted in either orientation within the coding sequence of the viral thymidine kinase gene were constructed. They were characterized by genomic analysis, hybridization studies, reversion to wild-type virus by in vivo recombination, and rescue from their genomes of plasmids which contained all or parts of the pBR322 sequence. TK- cells were infected with one of these recombinant viruses and then transfected with pools of chimeric plasmids composed of a cloned herpes simplex virus thymidine kinase gene which contained upstream inserts of different vaccinia DNA fragments prepared by restriction or sonication. Recombination between homologous pBR322 sequences within infected cells generated selectable recombinant viruses in which expression of the herpes simplex virus thymidine kinase gene was promoted by the upstream vaccinia insert. These viruses were characterized by genomic analysis, hybridization, and in vivo or in vitro phosphorylation of (5-[125I]deoxycytidine as a specific assay for the expressed herpes simplex virus thymidine kinase. Vaccinia DNA inserts were isolated conveniently for transfer to bacteria by rescuing appropriate plasmids from the genome of recombinant viruses. The sequence of 100 nucleotides adjacent to the upstream region of the herpes simplex virus gene was determined in nine different inserts measuring 0.17 to 1.07 kilobase pairs.  相似文献   

10.

Background

The diversity of viruses, the absence of universally common genes in them, and their ability to act as carriers of genetic material make assessment of evolutionary paths of viral genes very difficult. One important factor contributing to this complexity is horizontal gene transfer.

Results

We explore the possibility for the systematic identification of atypical genes within virus families, including viruses whose genome is not encoded by a double-stranded DNA. Our method is based on gene statistical features that differ in genes that were subject of recent horizontal gene transfer from those of the genome in which they are observed. We employ a one-class SVM approach to detect atypical genes within a virus family basing of their statistical signatures and without explicit knowledge of the source species. The simplicity of the statistical features used makes the method applicable to various viruses irrespective of their genome size or type.

Conclusions

On simulated data, the method can robustly identify alien genes irrespective of the coding nucleic acid found in a virus. It also compares well to results obtained in related studies for double-stranded DNA viruses. Its value in practice is confirmed by the identification of isolated examples of horizontal gene transfer events that have already been described in the literature. A Python package implementing the method and the results for the analyzed virus families are available at http://svm-agp.bioinf.mpi-inf.mpg.de.  相似文献   

11.
Yang Q  Catalano CE 《Biochemistry》2004,43(2):289-299
Terminase enzymes are common to both eukaryotic and prokaryotic double-stranded DNA viruses. These enzymes possess ATPase and nuclease activities that work in concert to "package" a viral genome into an empty procapsid, and it is likely that terminase enzymes from disparate viruses utilize a common packaging mechanism. Bacteriophage lambda terminase possesses a site-specific nuclease activity, a so-called helicase activity, a DNA translocase activity, and multiple ATPase catalytic sites that function to package viral DNA. Allosteric interactions between the multiple catalytic sites have been reported. This study probes these catalytic interactions using enzyme kinetic, photoaffinity labeling, and vanadate inhibition studies. The ensemble of data forms the basis for a minimal kinetic model for lambda terminase. The model incorporates an ADP-driven conformational reorganization of the terminase subunits assembled on viral DNA, which is central to the activation of a catalytically competent packaging machine. The proposed model provides a unifying mechanism for allosteric interaction between the multiple catalytic sites of the holoenzyme and explains much of the kinetic data in the literature. Given that similar packaging mechanisms have been proposed for viruses as dissimilar as lambda and the herpes viruses, the model may find general utility in our global understanding of the enzymology of virus assembly.  相似文献   

12.
The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is essential for viral replication and possesses both Pol- and DNA-binding activities. Previous studies demonstrated that the substitution of alanine for each of four arginine residues, which reside on the positively charged surface of UL42, resulted in decreased DNA binding affinity and a decreased ability to synthesize long-chain DNA by the polymerase. In this study, the effects of each substitution on the production of viral progeny, viral DNA replication, and DNA replication fidelity were examined. Each substitution mutant was able to complement the replication of a UL42 null mutant in transient complementation assays and to support the replication of plasmid DNA containing herpes simplex virus type 1 (HSV-1) origin sequences in transient DNA replication assays. Mutant viruses containing each substitution and a lacZ insertion in a nonessential region of the genome were constructed and characterized. In single-cycle growth assays, the mutants produced significantly less progeny virus than the control virus containing wild-type UL42. Real-time PCR assays revealed that these UL42 mutants synthesized less viral DNA during the early phase of infection. Interestingly, during the late phase of infection, the mutant viruses synthesized larger amounts of viral DNA than the control virus. The frequencies of mutations of the virus-borne lacZ gene increased significantly in the substitution mutants compared to those observed for the control virus. These results demonstrate that the reduced DNA binding of UL42 is associated with significant effects on virus yields, viral DNA replication, and replication fidelity. Thus, a processivity factor can influence replication fidelity in mammalian cells.  相似文献   

13.
Two mutations affecting herpes simplex virus type 1 glycoprotein B were mapped by marker rescue using cloned sequences of wild-type herpes simplex virus type 1 strain KOS DNA. One mutant, tsB5, is a temperature-sensitive mutant which does not express mature, functional glycoprotein B at the nonpermissive temperature. The other mutant, marB1.1, expresses an antigenic variant of glycoprotein B and was selected for resistance to neutralization by a monoclonal antibody. The mutation in tsB5 mapped to a 1.2-kilobase segment of the herpes simplex virus type 1 genome between coordinates 0.361 and 0.368, whereas the mutation in marB1.1 mapped to a 1.6-kilobase segment between coordinates 0.350 and 0.361. An in situ enzyme immunoassay was used to detect plaques of recombinant wild-type virus among the progeny of transfections with mutant marB1.1 DNA and wild-type DNA fragments.  相似文献   

14.
15.
Eight recombinant clones were obtained by insertion of BamHI fragments of herpes simplex type I viral DNA into a vector plasmid pUC19o. Of the obtained clones 5 were found to hybridize with herpes simplex type I and 2 viral DNA while 3 clones revealed a positive reaction with the Vero cells DNA. A constructed DNA-probe possessing the highest level of activity was selected for further studies. The probe is a BamHI fragment of herpes simplex type I viral DNA labelled with 32P dTTP. Probe sensitivity in blot hybridization is 10 pg for identification of type I viral DNA and 50 pg for type 2 viral DNA. The DNAs of cytomegalovirus and herpes zoster virus do not show positive signals with the probe. The increased sensitivity of the used dot hybridization as compared with biological or IEA antigen identification of the virus was confirmed with the clinical material from 59 patients with the different clinical manifestations of the herpes viral infection.  相似文献   

16.
The structure of the encapsidated DNA genome of ground squirrel hepatitis virus (GSHV) has been examined by restriction endonuclease cleavage, nucleic acid hybridization, and molecular cloning. GSHV virion DNA is a relaxed circular molecule of approximately 3,200 bases in length; most molecules harbor an extensive single-stranded region which is largely confined to one-half of the genome. The full-length viral DNA strand is covalently bound to protein. The single-stranded region can be repaired in vitro by the action of the endogenous virion polymerase, exogenously added DNA polymerase from avian myeloblastosis virus, or both. Restriction enzyme cleavage of viral DNA from different isolates demonstrated that multiple variants of GSHV exist in nature. The genomes of two such strains have been cloned in Escherichia coli, and their physical maps have been determined. Nucleic acid hybridization studies revealed that the strains share sequence homology with the DNA of human hepatitis B virus. Regions homologous to the coding regions for the surface and core antigens of human hepatitis B virus have been localized on the GSHV chromosome. Molecular cloning experiments have also led to the identification of a region of the viral genome which is altered in a procaryotic host.  相似文献   

17.
We have found that mycoplasma virus L172 is an enveloped globular virion containing circular, single-stranded DNA of 14.0 kilobases. L172 has been reported by other workers to have a double-stranded DNA genome of 13 to 17 kilobase pairs and has been classified as a plasmavirus, a group for which mycoplasma virus L2 is the type member. Mycoplasma viruses L172 and L2 differ in genome size and structure, DNA base composition, and protein composition, and they have no detectable DNA homology. As the only reported enveloped virion containing single-stranded DNA, L172 represents a new group of viruses.  相似文献   

18.
Aims: The aim of this study was to develop and demonstrate an approach for describing the diversity of human pathogenic viruses in an environmentally isolated viral metagenome. Methods and Results: In silico bioinformatic experiments were used to select an optimum annotation strategy for discovering human viruses in virome data sets and applied to annotate a class B biosolid virome. Results from the in silico study indicated that <1% errors in virus identification could be achieved when nucleotide‐based search programs (BLASTn or tBLASTx), viral genome only databases and sequence reads >200 nt were considered. Within the 51 925 annotated sequences, 94 DNA and 19 RNA sequences were identified as human viruses. Virus diversity included environmentally transmitted agents such as parechovirus, coronavirus, adenovirus and aichi virus, as well as viruses associated with chronic human infections such as human herpes and hepatitis C viruses. Conclusions: This study provided a bioinformatic approach for identifying pathogens in a virome data set and demonstrated the human virus diversity in a relevant environmental sample. Significance and Impact of the Study: As the costs of next‐generation sequencing decrease, the pathogen diversity described by virus metagenomes will provide an unbiased guide for subsequent cell culture and quantitative pathogen analyses and ensures that highly enriched and relevant pathogens are not neglected in exposure and risk assessments.  相似文献   

19.
Purified preparations of herpes simplex virus type 2 DNA polymerase made by many different laboratories always contain at least two polypeptides. The major one, of about 150,000 molecular weight, has been associated with the polymerase activity. The second protein, of about 54,000 molecular weight, which we previously designated ICSP 34, 35, has now been purified. The purified protein has been used to prepare antisera (both polyclonal rabbit serum and monoclonal antibodies). These reagents have been used to characterize the protein, to demonstrate its quite distinct map location from that of the DNA polymerase on the herpes simplex virus genome, and to demonstrate the close association between the two polypeptides.  相似文献   

20.
THE possibility of a relationship between herpes simplex viruses (HSV) and human cancer has been suggested1–4 chiefly on the basis of studies of the epidemiology of cervical cancer, but so far it has not been possible to demonstrate that human herpes viruses can induce primary transformation of normal cells. Injection of herpes simplex virus type 1 (ref. 5) or type 2 (ref. 6) into Syrian hamsters rarely leads to the production of a tumour and it has been difficult to demonstrate herpes viral antigens in tumour cells. Human herpes simplex viruses grown in vitro are characterized by the rapidity with which the infected cell is destroyed, so that cell transformation is impossible, but this effect can be mitigated by inactivation of the herpes virus by ultraviolet irradiation. Indeed, this procedure may have the additional advantage that viral infectivity is removed more quickly than the viral transforming potential7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号