首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antarctica is one of the most difficult habitats for sustaining life on earth; organisms that live there have developed different strategies for survival. Among these organisms is the green alga Prasiola crispa, belonging to the class Trebouxiophyceae. The literature on P. crispa taxonomy is scarce, and many gaps in the evolutionary relationship with its closest relatives remain. The goal of this study was to analyze the evolutionary relationships between P. crispa and other green algae using plastid and mitochondrial genomes. In addition, we analyzed the synteny conservation of these genomes of P. crispa with those of closely related species. Based on the plastid genome, P. crispa grouped with Prasiolopsis sp. SAG 84.81, another Trebouxiophyceaen species from the Prasiola clade. Based on the mitochondrial genome analysis, P. crispa grouped with other Trebouxiophyceaen species but had a basal position. The structure of the P. crispa chloroplast genome had low synteny with Prasiolopsis sp. SAG 84.81, despite some conserved gene blocks. The same was observed in the mitochondrial genome compared with Coccomyxa subellipsoidea C‐169. We were able to establish the phylogenetic position of P. crispa with other species of Trebouxiophyceae using its genomes. In addition, we described the plasticity of these genomes using a structural analysis. The plastid and mitochondrial genomes of P. crispa will be useful for further genetic studies, phylogenetic analysis and resource protection of P. crispa as well as for further phylogenetic analysis of Trebouxiophyceaen green algae.  相似文献   

3.
The Charophycean green algae (CGA) occupy a key phylogenetic position as the evolutionary grade that includes the sister group of the land plants (embryophytes), and so provide potentially valuable experimental systems to study the development and evolution of traits that were necessary for terrestrial colonization. The nature and molecular bases of such traits are still being determined, but one critical adaptation is thought to have been the evolution of a complex cell wall. Very little is known about the identity, origins and diversity of the biosynthetic machinery producing the major suites of structural polymers (i. e., cell wall polysaccharides and associated molecules) that must have been in place for land colonization. However, it has been suggested that the success of the earliest land plants was partly based on the frequency of gene duplication, and possibly whole genome duplications, during times of radical habitat changes. Orders of the CGA span early diverging taxa retaining more ancestral characters, through complex multicellular organisms with morphological characteristics resembling those of land plants. Examination of gene diversity and evolution within the CGA could help reveal when and how the molecular pathways required for synthesis of key structural polymers in land plants arose.  相似文献   

4.
The chlorophyll b-containing alga Mantoniella squamata was analyzed with respect to its capacity to balance the energy distribution from the light-harvesting antenna to photosystem I or photosystem II. It was shown, that this alga is unable to alter the absorption cross section of the two photosystems in terms of short-time regulations (state transitions). The energy absorbed by the LHC, which contains 60% of total photosynthetic pigments, is transferred to both photosystems without any preference. The stoichiometry of the two photosystems is found to be extremely unequal and variable during light adaptation. In high light, the molar ratio of P-680 per P-700 is found to be two, whereas under low light conditions this ratio accounts to nearly four. This very unbalanced stoichiometry of the reaction centers gives some new insights into the concept of the photosynthetic unit as well as in the importance of the regulation of the energy distribution. It is assumed that the high concentration of photosystem II can be understood as a mechanism to prevent the overexcitation of photosystem I. In addition, the changes im membrane protein pattern are not accompanied by variations in the ratio of appressed to nonappressed membranes as probed by ultrastructural analysis. It is suggested that the thylakoids are organized like a homogenous pigment bed. The lack of state transitions can be interpreted as a consequence of this unusual membrane morphology.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein of PSII - CPl P-700 chlorophyll a-protein - CPD Chlorophyll packing density index - cyt f cytochrome f - FP free pigments - LHC light-harvesting complex - Pmax light saturated photosynthetic rates per chlorophyll - n number of experiments - PQ plastoquinone - PS photosystem - PSU photosynthetic unit - QE non-photochemical quenching - QQ photochemical quenching  相似文献   

5.
Taurine entered the alga Chlorella fusca Shihira et Krauss strain 21l-8b via a pH and energy-dependent system ("permease"). Transport followed triphasic kinetics from 10−6 to 10−2 M with Km values for taurine of 5.4 × 10−5, 4.1 × l0−4 and l.5 × 10−3 M. This uptake system was specific for sulfonic acids and showed no affinity for α- and β -amino acids or Na+; thus the permease of C. fusca is different from all known taurine transport systems with respect to structural specificity and lack of Na+ -dependence. Uptake was not observed in sulfate-grown algae but developed as a response to sulfate limitation within 2 h. Sulfate addition caused a rapid decline in taurine transport capacity. Labeled taurine was rapidly metabolized in C. fusca to sulfate and ethanolamine, suggesting oxidative hydrolysis as the mechanism of C-S bond cleavage. Further incorporation of these catabolic products in C - and S -metabolism was demonstrated. Taurine catabolism was also detected in other green algae and some cyanobacteria.  相似文献   

6.
This study compared the effect of heat stress on coral‐associated bacterial communities among juveniles of the coral, Acropora tenuis, hosting different Symbiodinium types. In comparison to a control temperature treatment (28 °C), we documented dramatic changes in bacterial associates on juvenile corals harbouring ITS 1 type D Symbiodinium when placed in a high (32 °C) temperature treatment. In particular, there was a marked increase in the number of retrieved Vibrio affiliated sequences, which coincided with a 44% decline in the photochemical efficiency of the D‐juveniles. Interestingly, these Vibrio sequences affiliated most closely with the coral pathogen, Vibrio coralliilyticus, which has been implicated in some coral disease outbreaks. In contrast, A. tenuis hosting ITS 1 type C1 Symbiodinium did not exhibit major bacterial shifts in the elevated temperature treatment, indicating a more stable bacterial community during thermal stress; concomitantly a decline (10%) in photochemical efficiency was minimal for this group. D juveniles that had been exposed to moderately elevated sea temperatures (30 °C) in the field before being placed in the control temperature treatment displayed a decrease in the number of Vibrio affiliated sequences and bacterial profiles shifted to become more similar to profiles of corals harbouring type C1 Symbiodinium. In combination, these results demonstrate that thermal stress can result in shifts in coral‐associated bacterial communities, which may lead to deteriorating coral health. The lower resilience of A. tenuis to thermal stress when harbouring Symbiodinium D highlights the importance of inter‐kingdom interactions among the coral host, dinoflagellate endosymbiont and bacterial associates for coral health and resilience.  相似文献   

7.
The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA composed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA genes (3 rRNAs, 31 tRNAs, tmRNA, and a ribonuclease P RNA component) and 207 protein genes, including unidentified open reading frames. The striking feature of this genome is the high degree of gene compaction; it has very short intergenic distances (approximately 40% of the protein genes were overlapped) and no genes have introns. This genome encodes several genes that are rarely found in other plastid genomes. A gene encoding a subunit of sulfate transporter (cysW) is the first to be identified in a plastid genome. The cysT and cysW genes are located in the C. merolae plastid genome in series, and they probably function together with other nuclear-encoded components of the sulfate transport system. Our phylogenetic results suggest that the Cyanidiophyceae, including C. merolae, are a basal clade within the red lineage plastids.  相似文献   

8.
9.
The freezing and desiccation tolerance of 12 Klebsormidium strains, isolated from various habitats (aeroterrestrial, terrestrial, and hydro-terrestrial) from distinct geographical regions (Antarctic — South Shetlands, King George Island, Arctic — Ellesmere Island, Svalbard, Central Europe — Slovakia) were studied. Each strain was exposed to several freezing (−4°C, −40°C, −196°C) and desiccation (+4°C and + 20°C) regimes, simulating both natural and semi-natural freeze-thaw and desiccation cycles. The level of resistance (or the survival capacity) was evaluated by chlorophyll a content, viability, and chlorophyll fluorescence evaluations. No statistical differences (Kruskal-Wallis tests) between strains originating from different regions were observed. All strains tested were highly resistant to both freezing and desiccation injuries. Freezing down to −196°C was the most harmful regime for all studied strains. Freezing at −4°C did not influence the survival of studied strains. Further, freezing down to −40°C (at a speed of 4°C/min) was not fatal for most of the strains. RDA analysis showed that certain Antarctic and Arctic strains did not survive desiccation at +4°C; however, freezing at −40°C, as well as desiccation at +20°C was not fatal to them. On the other hand, other strains from the Antarctic, the Arctic, and Central Europe (Slovakia) survived desiccation at temperatures of +4°C, and freezing down to −40°C. It appears that species of Klebsormidium which occupy an environment where both seasonal and diurnal variations of water availability prevail, are well adapted to freezing and desiccation injuries. Freezing and desiccation tolerance is not species-specific nor is the resilience only found in polar strains as it is also a feature of temperate strains. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia. This paper is dedicated to the memory of the late Dr. Bohuslav Fott (1908–1976), Professor of Botany at the Charles University in Prague, to mark the centenary of his birth.  相似文献   

10.
In the eutrophic Lake Mikølajskie macrophytes disappearing from the deeper parts of the littoral are replaced by Vaucheria dichotoma Ag. This forms a belt at 3.0–4.5 m to which depth only 1% of surface light penetrates. The zone of V. dichotoma has a layered structure. Some filaments are covered in mud and receive no light, but are alive and photosynthesize when transferred to light. V. dichotoma prefers fertile environments with a high content of phosphate-phosphorus and ammonium-nitrogen. It is evergreen and its biomass changes relatively little during a year.  相似文献   

11.
Both global and local environmental changes threaten coral reef ecosystems. To evaluate the effects of high seawater temperature and phosphate enrichment on reef‐building crustose coralline algae, fragments of Porolithon onkodes were cultured for 1 month under laboratory conditions. The calcification rate of the coralline algae was not affected at 30°C, but it decreased to the negatives at 32°C in comparison to the control treatment of 27°C, indicating that the temperature threshold for maintaining positive production of calcium carbonate lies between 30 and 32°C. Phosphate enrichment of 1–2 μmol L ?1 did not affect the calcification rate. The net oxygen production rate was enhanced by phosphate enrichment, suggesting that the photosynthetic rate was limited by the availability of phosphate. It was concluded that moderate phosphate enrichment does not directly deteriorate algal calcification but instead ameliorates the negative effects of high seawater temperature on algal photosynthesis.  相似文献   

12.
Increasing evidence exists that bacterial communities interact with and shape the biology of algae and that their evolutionary histories are connected. Despite these findings, physiological studies were and still are generally carried out with axenic or at least antibiotic‐treated cultures. Here, we argue that considering interactions between algae and associated bacteria is key to understanding their biology and evolution. To deal with the complexity of the resulting ‘holobiont’ system, a metabolism‐centred approach that uses combined metabolic models for algae and associated bacteria is proposed. We believe that these models will be valuable tools both to study algal–bacterial interactions and to elucidate processes important for the acclimation of the holobiont to environmental changes.  相似文献   

13.
The green macroalgal genus Ulva (incl. Entemmorpha) contains economically valuable species, is of relevance for coastal management (green tides), and certain taxa serve as experimental organisms for fundamental research in green algae. The nuclear genome size of Ulva (Entemmorpha) compressa Linnaeus was measured in propidium iodide stained nuclei using laser scanning cytometry. Nuclei of fixed gametes yielded reproducible values, whereas nuclei extracted from multicellular gametophytes were unsuitable. With nuclei of Arabidopsis thaliana (L.) Heynh and Saccharomyces cerevisiae Hansen as references, the haploid nuclear genome size of U. compressa was calculated as 135 ± 7 Mbp. This is the smallest genome so far known from any species of Ulva.  相似文献   

14.
Photoinhibition of photosynthesis and subsequent recovery were studied in cultures of the unicellular green alga Chlamydomonas reinhardtii L. (wt strain 137 c mating type +) acclimated at high (27°C) and low (12°C) temperature, Photoinhibition was assayed by fluorescence kinetics (77K) and oxygen evolution measurements under growth temperature conditions Inhibition of 50% was obtained by exposing cultures acclimated at high temperature to a photosynthetic photon flux density (PPFD) of 1 600 μmol m−2 S−1 at. 27°C. and cultures acclimated at low temperature to a PPFD of 900 μmol m−2 s−1 at 12°C When the photoinhibitory conditions were shifted it was revealed that algae acclimated at low temperature had acquired an increased resistance to photoinhibition at both 12 and 27°C. Furthermore, acclimation at low temperature increased the capacity to recover from 50% photoinhibition at both 12 and 27°C Studies of photoinhibition in the presence of the protein synthesis inhibitor, chloramphenicol, revealed that in response to acclimation at low temperature during growth the algae became more dependent on protein synthesis to avoid photoinhibition. It is suggested that acclimation at low temperature rendered C. reinhardtii an increased resistance to photoinhibition by. increasing the rate of turnover of photodamaged proteins in photosystem II (PS II). However, we cannot exclude the possibility that the increased resistance to photoinhibition of C. reinhardtii acclimated at low temperature also involves modifications of the mechanism of photoinhibition.  相似文献   

15.
Uncovering the genomic basis of climate adaptation in traditional crop varieties can provide insight into plant evolution and facilitate breeding for climate resilience. In the African cereal sorghum (Sorghum bicolor L. [Moench]), the genomic basis of adaptation to the semiarid Sahelian zone versus the subhumid Soudanian zone is largely unknown. To address this issue, we characterized a large panel of 421 georeferenced sorghum landrace accessions from Senegal and adjacent locations at 213,916 single‐nucleotide polymorphisms (SNPs) using genotyping‐by‐sequencing. Seven subpopulations distributed along the north‐south precipitation gradient were identified. Redundancy analysis found that climate variables explained up to 8% of SNP variation, with climate collinear with space explaining most of this variation (6%). Genome scans of nucleotide diversity suggest positive selection on chromosome 2, 4, 5, 7, and 10 in durra sorghums, with successive adaptation during diffusion along the Sahel. Putative selective sweeps were identified, several of which colocalize with stay‐green drought tolerance (Stg) loci, and a priori candidate genes for photoperiodic flowering and inflorescence morphology. Genome‐wide association studies of photoperiod sensitivity and panicle compactness identified 35 and 13 associations that colocalize with a priori candidate genes, respectively. Climate‐associated SNPs colocalize with Stg3a, Stg1, Stg2, and Ma6 and have allelic distribution consistent with adaptation across Sahelian and Soudanian zones. Taken together, the findings suggest an oligogenic basis of adaptation to Sahelian versus Soudanian climates, underpinned by variation in conserved floral regulatory pathways and other systems that are less understood in cereals.  相似文献   

16.
One common observation concerning mitochondrial genomes is that they have a low guanine and cytosine content (GC content); of the complete mitochondrial genome sequences currently available at the National Center for Biotechnology Information (NCBI) (July 2007), the GC content ranges from 13.3% to 53.2% and has an average value of 38%. Here, we present the GC-rich mitochondrial genome (57% GC) of the colorless green alga Polytomella capuana. The disproportion of GC among the different regions of the P. capuana mitochondrial DNA (mtDNA) suggests that a neutral process is responsible for the GC bias. We propose that a biased gene conversion mechanism resulted in the GC-rich state of the P. capuana mtDNA. In addition, our analysis indicates that the P. capuana mitochondrial genome is a single 13-kb linear molecule with telomeres, which have a closed (hairpin-loop) conformation: a novel terminal structure among described linear green-algal mtDNAs. Furthermore, using a series of GC-rich inverted repeats found within the P. capuana mitochondrial genome, we describe recombination-based scenarios of how intact linear mtDNA conformations can be converted into the fragmented forms found in other Polytomella taxa.  相似文献   

17.
The phylum Streptophyta comprises all land plants and six monophyletic groups of charophycean green algae (Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales, and Charales). Phylogenetic analyses of four genes encoded in three cellular compartments suggest that the Charales are sister to land plants and that charophycean green algae evolved progressively toward an increasing cellular complexity. To validate this phylogenetic hypothesis and to understand how and when the highly conservative pattern displayed by land plant chloroplast DNAs (cpDNAs) originated in the Streptophyta, we have determined the complete chloroplast genome sequence (184,933 bp) of a representative of the Charales, Chara vulgaris, and compared this genome to those of Mesostigma (Mesostigmatales), Chlorokybus (Chlorokybales), Staurastrum and Zygnema (Zygnematales), Chaetosphaeridium (Coleochaetales), and selected land plants. The phylogenies we inferred from 76 cpDNA-encoded proteins and genes using various methods favor the hypothesis that the Charales diverged before the Coleochaetales and Zygnematales. The Zygnematales were identified as sister to land plants in the best tree topology (T1), whereas Chaetosphaeridium (T2) or a clade uniting the Zygnematales and Chaetosphaeridium (T3) occupied this position in alternative topologies. Chara remained at the same basal position in trees including more land plant taxa and inferred from 56 proteins/genes. Phylogenetic inference from gene order data yielded two most parsimonious trees displaying the T1 and T3 topologies. Analyses of additional structural cpDNA features (gene order, gene content, intron content, and indels in coding regions) provided better support for T1 than for the topology of the above-mentioned four-gene tree. Our structural analyses also revealed that many of the features conserved in land plant cpDNAs were inherited from their green algal ancestors. The intron content data predicted that at least 15 of the 21 land plant group II introns were gained early during the evolution of streptophytes and that a single intron was acquired during the transition from charophycean green algae to land plants. Analyses of genome rearrangements based on inversions predicted no alteration in gene order during the transition from charophycean green algae to land plants.  相似文献   

18.
We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.  相似文献   

19.
20.
The cichlids of Lake Victoria are a textbook example of adaptive radiation, as >500 endemic species arose in just 14,600 years. The degree of genetic differentiation among species is very low due to the short period of time after the radiation, which allows us to ascertain highly differentiated genes that are strong candidates for driving speciation and adaptation. Previous studies have revealed the critical contribution of vision to speciation by showing the existence of highly differentiated alleles in the visual opsin gene among species with different habitat depths. In contrast, the processes of species-specific adaptation to different ecological backgrounds remain to be investigated. Here, we used genome-wide comparative analyses of three species of Lake Victoria cichlids that inhabit different environments—Haplochromis chilotes, H. sauvagei, and Lithochromis rufus—to elucidate the processes of adaptation by estimating population history and by searching for candidate genes that contribute to adaptation. The patterns of changes in population size were quite distinct among the species according to their habitats. We identified many novel adaptive candidate genes, some of which had surprisingly long divergent haplotypes between species, thus showing the footprint of selective sweep events. Molecular phylogenetic analyses revealed that a large fraction of the allelic diversity among Lake Victoria cichlids was derived from standing genetic variation that originated before the adaptive radiation. Our analyses uncovered the processes of species-specific adaptation of Lake Victoria cichlids and the complexity of the genomic substrate that facilitated this adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号