共查询到20条相似文献,搜索用时 15 毫秒
1.
W. W. Carter 《Journal of nematology》1975,7(3):229-233
Soreshin of cotton was more severe from combined infections of Rhizoctonia solani and Meloidogyne incognita than from either organism alone, when both critical soil temperature and inoculum concentrations were present. Optimum soil temperatures for disease development from combined infections were 18 and 21 C. Either 2,500 or 5,000 M. incognita larvae per plant, combined with R. solani, increased seedling disease severity over that caused by R. solani alone. When 100 or 500 larvae per plant were added with R. solani, disease severity did not change. Disease severity increased with the highest level of R. solani inoculum either alone or combined with M. incognita. 相似文献
2.
W. W. Carter 《Journal of nematology》1975,7(3):234-236
Soils containing 60, 75, and 90% coarse particles (sand plus coarse silt) were prepared by dilution of a field soil with 246μm (60-mesh) silica sand. As the coarse-particle content of the soils increased, the synergistic interaction between Meloidogyne incognita and Rhizoctonia solani on cotton seedlings increased. Increasing the coarse-particle content of the soil also increased damage from the nematode alone and slightly increased soreshin damage from R. solani alone. 相似文献
3.
A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings. 相似文献
4.
Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop. 相似文献
5.
Root gall induction and egg production by the four recognized host races and two cytological races of Meloidogyne incognita were compared on cotton Gossypium hirsutum cvs. Deltapine 16 (root-knot susceptible) and Auburn 634 (highly resistant). The 12 nematode populations included in the study were from various parts of the world. No population increases occurred on the highly resistant cultivar. After 45 days, populations of host races 1 and 2 induced slight root galling on both cuhivars with only limited reproduction. Host race 4 populations induced moderate root galling with higher reproduction on Deltapine 16 than that of race 1 or race 2 populations. Host race 3 populations induced severe root galling with population density increases of 7-30-fold. In a complementary study, 24 cotton cultivars or breeding lines were compared for suitability as hosts for a typical population of M. incognita race 3. The poorest hosts, ''Aubnru 623,'' ''Auburn 634,'' and ''McNair 220,'' yielded fewer eggs after 45 days than were added initially. The best hosts - ''M-8.'' ''DES 24-8,'' ''McNair 235,'' and ''Coker 20l'' - yielded > 5 times as many eggs as were added initially. 相似文献
6.
Interactions of Concomitant Species of Nematodes and Fusarium oxysporum f. sp. vasinfectum on Cotton
Meloidogyne incognita, Hoplolaintus galeatus, and North Carolina and Georgia populations of Belonolaimus longicaudatus were introduced singly and in various combinations with Fusarium oxysporum f. sp. vasinfectum on wilt-susceptible ''Rowden'' cotton. Of all the nematodes, the combination of the N. C. population of B. longicaudatus with Fusarium promoted greatest wilt development. H. galeatus had no effect on wilt. With Fusarium plus M. incognito or B. longicaudatus, high nematode levels promoted greater wilt than low levels. The combination of either population of B. longicaudatus with M. incognita and Fusarium induced greater wilt development than comparable inoculum densities of either nematode alone or where H. galeatus was substituted for either of these nematodes. Nematode reproduction was inversely related to wilt development. Without Fusarium, however, the high inoculum level resulted in greater reproduction of all nematode species on cotton. Combining M. incognita with B. longicaudatus or H. galeatus gave mutually depressive effects on final nematode populations. The interactions of H. gateatus with B. longicaudatus varied with two populations of the latter. 相似文献
7.
Field experiments in 1992 and 1994 were conducted to determine the effect of Rotylenchulus reniformis, reniform nematode, on lint yield and fiber quality of 10 experimental breeding lines of cotton (Gossypium hirsutum) in untreated plots or plots fumigated with 1,3-dichloropropene. Controls were La. RN 1032, a germplasm line possessing some resistance to R. reniformis, and Stoneville 453, a cultivar that is susceptible to reniform nematode. Several breeding lines produced greater lint yields than Stoneville 453 or La. RN 1032 in both fumigated and untreated plots. Average lint yield suppression due to R. reniformis for six of the 10 breeding lines was less than half of the 52% yield reduction sustained by Stoneville 453. In growth chamber experiments, R. reniformis multiplication factors for La. RN 1032 and breeding lines N222-1-91, N320-2-91, and N419-1-91 were significantly lower than on Deltapine 16 and Stoneville 453 at 6 weeks after inoculation. R. reniformis populations increased by more than 50-fold on all entries within 10 weeks. In growth chambers, the breeding lines N220-1-92, N222-1-91, and N320-2-91 were resistant to Meloidoglyne incognita race 3; multiplication factors were ≤1.0 at both 6 weeks and 10 weeks after inoculation compared with 25.8 and 26.5 for Deltapine 16 at 6 and 10 weeks after inoculation, respectively, and 9.1 and 2.6 for Stoneville 453. Thus, the results indicate that significant advances have been made in developing improved cotton germplasm lines with the potential to produce higher yields in soils infested with R. reniformis or M. incogaita. In addition to good yield potential, germplasm lines N222-1-91 and N320-2-91 appear to possess low levels of resistance to R. reniformis and a high level of resistance to M. incognita. This germplasm combines high yield potential with significant levels of resistance to both R. reniformis and M. incognita. 相似文献
8.
Agrobacterium tumefaciens stimulated and Fusarium oxysporum f. sp. lycopersici inhibited development and reproduction of Meloidogyne incognita when applied to the opposite split root of tomato, Lycopersicon esculentum cv. Tropic, plants. The lowest rate of nematode reproduction occurred after 2,000 juveniles were applied and the fungus was present in the opposite split root. The effects of all three pathogens alone on the growth of roots and shoots of tomato plants were evident, but M. incognita had a greater effect alone than did either of the other pathogens. The length of split roots was reduced by the infection of M. incognita and A. tumefaciens or F. oxysporum f. sp. lycopersici. The number of galls induced by nematodes on roots was higher where the bacterium was applied and lower where the fungus was applied to the opposite split root. 相似文献
9.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types. 相似文献
10.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased. 相似文献
11.
From the fall of 1968 through the summer of 1973, a Georgia cotton field with a lengthy history of the Cotton Stunt Disease Complex was sampled for the presence of plant parasitic nematodes. Although Meloidogyne incognita was recovered on all sampling dates, concomitant populations of Hoplolaimus columbus were not recovered until the spring of 1970. During the succeeding four growing seasons, the population density and horizontal distribution of H. columbus increased, and H. columbus replaced M. incognita as the predominant phytopathogenie species. A second Georgia cotton field containing concomitant populations of H. columbus and M. incognita was observed from the fall of 1971 through the summer of 1973. In this case the horizontal distribution of both species remained relatively constant and the population density of H. columbus increased steadily. In both locations, the presence of either H. columbus or M. incognita significantly inhibited the presence of the concomitant species. In general, however, the initial spring or final fall population densities of H. columbus or M. incognita had no significant influence on the population density of the concomitant species, The data are also discussed in relation to the biological significance of H. columbus in the southeastern coastal plain. 相似文献
12.
Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes. 相似文献
13.
The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them. 相似文献
14.
Cotton plants resistant to Meloidogyne incognita had roots characterized by fewer and smaller galls, and females that produced fewer egg masses containing fewer eggs than did susceptible plants. Many galls on resistant roots contained no nematodes at the time of examination. Penetration of the resistant cultivar was equal to that of the susceptible cultivar and independent of the number of nematodes in the inoculum. Fewer nematodes penetrated resistant or susceptible plants with eight leaves than those with fewer leaves. Reciprocal grafts of resistant and susceptible plants failed to confer resistance or susceptibility to the rootstock. 相似文献
15.
The numbers of Meloidogyne incognita larvae which migrated from cotton roots declined over a 16-day period, but the difference in numbers migrating from resistant and susceptible cultivars was not significant. Larvae penetrated susceptible roots, matured, and reproduced within 14 days following inoculation, whereas nematode development in the resistant roots was greatly retarded. Three types of histological responses were observed in infected, resistant roots, and these correlated with the degree of nematode development. Some galls were examined which contained only fragments of nematodes; others contained no detectable traces of developing larvae. Formation of druses in galls, but not in healthy tissue, was noted in both cultivars 20 days after inoculation. Massive invasion of roots resulted in deep longitudinal fissures of root cortex. 相似文献
16.
The effects of Meloidogyne incognita and Thielaviopsis basicola on the growth of cotton (Gossypium hirsutum) and the effects of T. basicola on M. incognita populations were evaluated in a 2-year study. Microplots were infested with M. incognita, T. basicola, or a combination of M. incognita and T. basicola. Uninfested plots served as controls both years. Seedling survival was decreased by the M. incognita + T. basicola treatment compared to the control. Meloidogyne incognita alone and M. incognita + T. basicola reduced plant height-to-node ratio for seedlings in both years. Seed cotton yield was reduced, and the length of time required for boll maturation was lengthened by M. incognita + T. basicola in 1994 and M. incognita both alone and with T. basicola in 1995. Position of the first sympodial node on the main stem was increased by M. incognita in both years and was higher for plants treated with M. incognita + T. basicola in 1995 in comparison to the control. The number of sympodial branches with bolls in the first and second fruiting position and the percentage of bolls retained in the second position were reduced both years by M. incognita + T. basicola compared to either the control or T. basicola alone. Orthogonal contrasts indicated that effects on height-to-node ratio, number of days to first cracked boll, and yield were significantly different for combined pathogen inoculations than with either pathogen alone. Meloidogyne incognita eggs at harvest were reduced by T. basicola in 1994 and 1995 compared to M. incognita alone. The study demonstrated a significant interaction between M. incognita and T. basicola on cotton that impacted the survival and development of cotton and the reproduction of M. incognita on cotton. 相似文献
17.
William W. Carter 《Journal of nematology》1982,14(3):343-346
The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather than by genetic resistance mechanisms. However, the nematode resistant cultivar did not support maturation of nematodes until a soil tempurature of 35 C was attained. This indicated that resistance mechanisms are partially repressed at 35 C and differences in nematode development cannot be explained in terms of accumulated heat units. The moderately resistant cultivar was significantly more sensitive to the effects of high temperature than was the resistant cultivar. 相似文献
18.
Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density 总被引:1,自引:0,他引:1
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty. 相似文献
19.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton. 相似文献
20.
Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. 相似文献