首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The effects of soil disturbance on the nematode community were assessed at 30 sites on the outer coastal plain of Mississippi, representing four ages since soil disturbance plus a control group of six undisturbed sites. Thirty-five taxa were encountered, dominated in abundance and taxonomic richness by plant and bacterial feeders. Nematodes were more abundant and more taxonomically rich in sites with a low slope and deep litter cover, distant from trees. Plant feeders were more numerous at sites with a dense herb cover, suggesting limitation by food availability. When sites were arranged as a chronosequence, herb cover, litter depth, soil organic matter, soil moisture, and tree canopy cover increased through time consistent with succession to forest. The abundance of most trophic groups decreased in the 10 to 20 years following disturbance and increased thereafter, a pattern repeated in taxonomic richness of plant and bacterial feeders. Fifty years after disturbance, nematode abundance had not returned to levels observed in control sites. These results suggest that nematode succession following soil disturbance is a gradual process regulated by establishment of aboveground vegetation. There was no evidence of dispersal limitation or facilitation by colonist nematode species.  相似文献   

2.
Nematodes are the most diverse and highly significant group of soil-inhabiting microorganisms that play a vital role in organic material decomposition and nutrient recycling.Diverse geographical locations and environmental gradients show a significant impact on the diversity of nematodes. Present study aims to assess the effects of ecological (altitude, temperature, moisture) and edaphic (soil pH, nutrients, soil patches) factors on the soil nematode diversity and structure at five different landscape patches (forests, apple orchards, rice fields, pastures, and alpine zone) from ten different sites of Kashmir valley (India). Differences in the altitudinal gradients results in the shift of generic nematode population. Among the soil patches, highest nematode diversity was observed in forest soil and least in alpine soil; however, bacteriovorous nematodes dominated all the soil patches. The temperature and moisture have a significant effect on nematode diversity, the highest nematode trophic levels were observed above 21°C temperature, and 30% moisture. Nematode abundance decreased from alkaline to acidic pH of the soil. Soil nutrients such as, nitrogen (N) and phosphorus (P) have shown a detrimental effect in nematode richness at each site, where nematode diversity and richness of genera were higher at abundant soil N and P but decreased at low soil nutrients. Ecological indices like diversity index (DI), Shannon-Wiener Index (H'), enrichment index (EI), and maturity Index (MI) values demonstrated forest soil more favourable for nematodes and high soil health status than other soil patches. This study suggested that these indices may be helpful as soil monitoring tools and assessing ecosystem sustainability and biodiversity.  相似文献   

3.
Ungulates, smaller mammals, and invertebrates can each affect soil biota through their influence on vegetation and soil characteristics. However, direct and indirect effects of the aboveground biota on soil food webs remain to be unraveled. We assessed effects of progressively excluding aboveground large‐, medium‐ and small‐sized mammals as well as invertebrates on soil nematode diversity and feeding type abundances in two subalpine grassland types: short‐ and tall‐grass vegetation. We explored pathways that link exclusions of aboveground biota to nematode feeding type abundances via changes in plants, soil environment, soil microbial biomass, and soil nutrients. In both vegetation types, exclusions caused a similar shift toward higher abundance of all nematode feeding types, except plant feeders, lower Shannon diversity, and lower evenness. These effects were strongest when small mammals, or both small mammals and invertebrates were excluded in addition to excluding larger mammals. Exclusions resulted in a changed abiotic soil environment that only affected nematodes in the short‐grass vegetation. In each vegetation type, exclusion effects on nematode abundances were mediated by different drivers related to plant quantity and quality. In the short‐grass vegetation, not all exclusion effects on omni–carnivorous nematodes were mediated by the abundance of lower trophic level nematodes, suggesting that omni–carnivores also depended on other prey than nematodes. We conclude that small aboveground herbivores have major impacts on the soil food web of subalpine short‐ and tall‐grass ecosystems. Excluding aboveground animals caused similar shifts in soil nematode assemblages in both subalpine vegetation types, however, mechanisms turned out to be system‐specific.  相似文献   

4.
东北黑土区是保障我国粮食安全的重要土壤资源, 了解该区域内农田土壤线虫的群落组成及其对环境驱动因子的响应机制, 对于研究黑土区农田土壤生态系统的生物多样性分布格局具有重要意义。2018年9月, 我们在42°50°‒49°08° N的典型黑土区采集了93个农田土壤样品, 利用形态学鉴定技术分析了土壤线虫群落的组成与结构。共鉴定出47个线虫属(相对丰度 > 1%), 其中食细菌线虫中的拟丽突属(Acrobeloides)是典型黑土区农田土壤中的优势属(相对丰度 > 5%)。土壤线虫总丰富度和总多度均随纬度增加而显著增加, 然而类似的变化趋势只出现在食细菌和杂食/捕食线虫中。土壤有机碳是影响土壤线虫丰富度和多度最为重要的环境因子, 其次是月平均温度。典型黑土区农田土壤线虫群落结构以47° N为分界线分为南部和北部两类, 主要归因于线虫群落中植物寄生和杂食/捕食线虫的相对多度在南、北特征属中存在差异。土壤pH值和容重分别是影响南部与北部黑土区线虫群落最重要的环境因子。本研究明确了典型黑土区农田土壤线虫群落的纬度分布格局及其与环境因素的关系, 可为揭示农业活动干扰下土壤生物对环境因子的响应机制提供基础数据和理论参考。  相似文献   

5.

Background

Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.

Methodology/Principal Findings

We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.

Conclusions/Significance

The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant – nematode interactions.  相似文献   

6.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

7.
The bacterial diversity associated with soil nematodes and its relationship with their feeding habits are as yet poorly understood. In the present study the diversity and abundance of bacteria from nematodes and their surrounding soil were analysed and compared. The nematodes were collected from a grassland soil and sorted into bacterial, fungal, plant, predatory and omnivore feeding groups and assigned to taxonomic groups. Total DNA was extracted from the nematodes and partial bacterial 16S rRNA genes were PCR amplified, cloned and sequenced. The abundance and composition of bacterial taxa differed between and within feeding groups. The lowest bacterial diversity was found in the predatory nematodes Prionchulus sp., whereas the highest bacterial diversity was associated with the bacterial-feeding nematode Acrobeles sp. The soil had a more diverse bacterial community than the communities found in the nematode groups. The 16S rRNA gene sequences of bacteria associated with nematodes did not overlap with those detected in soil as determined using the cloning screening approach. However, bacterial sequences identified from nematodes could be detected in the soil with targeted PCR. Our data suggest that the nematodes do not feed on the most abundant bacteria present in soil. Furthermore, several nematodes contained suspected bacterial symbionts and parasites.  相似文献   

8.
Insect herbivores are important drivers of ecosystem processes in grasslands, and can mediate the grassland's response to environmental change. For example, recent evidence shows that above‐ and belowground herbivory, individually and in combination, can modify how a plant community responds to nitrogen (N) eutrophication, an important driver of global change. However, knowledge about how such effects extend to the associated soil food web is lacking. In a mesocosm experiment, we investigated how communities of soil nematodes – an abundant and functionally important group of soil organisms – responded to above‐ and belowground insect herbivory at contrasting N levels. We found that the strongest influence of above‐ and belowground herbivory on the nematode community appeared at elevated N. The abundance of root‐feeding nematodes increased when either above‐ or belowground insect herbivores were present at elevated N, but when applied together the two herbivore types cancelled out one another's effect. Additionally, at elevated N aboveground herbivory increased the abundance of fungal‐feeders relative to bacterial‐feeders, which indicates changes in decomposition pathways induced by N and herbivory. Belowground herbivory increased the abundance of omnivorous nematodes. The shifts in both the herbivorous and detrital parts of the soil food web demonstrate that above‐ and belowground herbivory does not only mediate the response of the plant community to N eutrophication, but in extension also the soil food web sustained by the plant community. We conclude that feedbacks between effects of above‐ and belowground herbivory mediate the response of the grassland ecosystem to N eutrophication.  相似文献   

9.
Soil nematodes are fundamentally aquatic animals, requiring water to move, feed, and reproduce. Nonetheless, they are ubiquitous in desert soils because they can enter an anhydrobiotic state that allows them to persist when water is biologically unavailable. In the hyper‐arid Namib Desert of Namibia, rain is rare, but fog routinely moves inland from the coast and supports plant and animal life. Very little is understood about how this fog may affect soil organisms. We investigated the role of fog moisture in the ecology of free‐living, soil nematodes across an 87‐km fog gradient in the gravel plains of the Namib Desert. We found that nematodes emerged from anhydrobiosis and became active during a fog event, suggesting that they can utilize fog moisture to survive. Nematode abundance did not differ significantly across the fog gradient and was similar under shrubs and in interplant spaces. Interplant soils harbor biological soil crusts that may sustain nematode communities. As fog declined along the gradient, nematode diversity increased in interplant soils. In areas where fog is rare, sporadic rainfall events can stimulate the germination and growth of desert ephemerals that may have a lasting effect on nematode diversity. In a 30‐day incubation experiment, nematode abundance increased when soils were amended with water and organic matter. However, these responses were not evident in field samples, which show no correlations among nematode abundance, location in the fog gradient, and soil organic matter content. Soil nematodes are found throughout the Namib Desert gravel plains under a variety of conditions. Although shown to be moisture‐ and organic matter‐limited and able to use moisture from the fog for activity, variation in fog frequency and soil organic matter across this unique ecosystem may be biologically irrelevant to soil nematodes in situ.  相似文献   

10.
The positive influence of bacterial feeding nematodes on bacterial mediated processes such as organic matter mineralization and nutrient cycling is widely accepted, but the mechanisms of these interactions are not always apparent. Both transport of bacteria by nematodes, and nutritional effects caused by nematode N excretion are thought to be involved, but their relative importance is not known because of the difficulties in studying these interactions in soil. We developed a simple in vitro assay to study complex nematode/bacterial interactions and used it to conduct a series of experiments to determine the potential influence of nematode movement and nutritional effects on bacterial resource use. The system used bacterial feeding and nonfeeding insect parasitic nematodes, and luminescent bacteria marked with metabolic reporter genes. Both nutritional enhancement of bacterial activity and bacterial transport were observed and we hypothesize that in nature, the relative importance of transport is likely to be greater in bulk soil, whereas nematode excretion may have greater impact in the rhizosphere. In both cases, the ability of nematodes to enhance bacterial resource utilization has implications for soil components of biogeochemical cycling.  相似文献   

11.
Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes ( Heterodera spp.) are dominant in the soil nematode community and greenhouse studies pointed at bottom-up control by their host plant. Here we examine the population dynamics of H. arenaria in the field in relation to resource quantity in the root zone of Ammophila arenaria (marram grass).
Ammophila arenaria is a pioneer grass in mobile coastal foredunes of northwestern and Mediterranean Europe. Every year, the plant expands clonally into freshly deposited layers of wind-blown sand, followed by dispersal and build-up of the nematode population into the new root zone. In a newly developing root zone the first H. arenaria cysts were observed one month after the first new roots were detected, indicating that nematode dispersal is not limiting the initial establishment of new populations. Throughout the growth season, the numbers of cysts, as well as the numbers of eggs and juveniles within cysts, were related to the quantity of roots. However, cyst density varied between years. Therefore, we conclude that in new root layers of A. arenaria cyst nematodes are bottom-up controlled by resource quantity, but that other factors, for example resource quality, influence the relation between nematode abundance and resource quantity.
In deeper root zones the nematode abundance declines over time. Here, numbers of cysts were not related to root biomass, while numbers of eggs and juveniles inside the cysts were weakly related. This points at other factors than resource quantity, for example the quality of the roots or unsuitable abiotic environmental conditions that have a stronger influence on cyst numbers than resource quantity. We discuss how bottom-up control of cyst nematodes may indirectly protect the plant against harmful root knot nematodes.  相似文献   

12.
Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant litter, as suggested by theory, we grew individuals of three grassland plants—Holcus lanatus, Plantago lanceolata and Lotus corniculatus—in soils into which 15N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil microbes and their protozoan and nematode feeders, and to link decomposer growth and plant nutrient uptake, we measured the amount of N taken up by plants from the added litter. We hypothesised that those species that induce the highest growth of microbes, and especially that of microbial feeders, will also take up the highest amount of N from the litter. We found, however, that although numbers of bacterial-feeding Protozoa and nematodes were on average lower after addition of Holcus than Plantago or Lotus litter, N uptake was higher from Holcus litter. Further, although the effects on Protozoa and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant species, these differences cannot predict differences in litter-N uptake among plant species. A likely reason is that for nutrient uptake, other species-specific plant traits, such as litter chemistry, root proliferation ability and competitiveness for soil N, override in significance the species-specific ability of plants to induce decomposer growth.  相似文献   

13.
森林演替会通过改变植物群落组成和土壤环境影响土壤生物群落, 反过来, 土壤生物群落的变化也会对生态系统的演替产生反馈作用, 但迄今南亚热带森林演替过程中土壤生物群落的变化特征尚不清晰。本研究以广东省鼎湖山的南亚热带森林演替序列(马尾松(Pinus massoniana)林-针阔叶混交林-季风常绿阔叶林)为对象, 研究了森林演替过程中土壤线虫多样性和群落结构的动态变化及其影响因素。通过采集不同演替阶段的土壤样品, 分析和比对了不同演替阶段土壤线虫的多度、多样性、群落组成、土壤线虫生态指数以及土壤理化性质的差异。结果表明: (1)在南亚热带森林演替过程中, 针阔叶混交林和季风常绿阔叶林土壤线虫的α多样性显著高于马尾松林, 但土壤线虫总数和各营养类群多度及其相对丰度并无显著变化; (2)针阔叶混交林中土壤线虫富集指数显著高于马尾松林, 表明其土壤养分状况要好于马尾松林, 而季风常绿阔叶林土壤线虫结构指数较高, 表明其受干扰程度较低; (3)针阔叶混交林的土壤含水量和土壤理化性质(除土壤总磷含量)已达到季风常绿阔叶林的水平, 但两者的土壤pH值均显著低于马尾松林, 而土壤pH值和土壤含水量是影响土壤线虫群落动态变化的主要因素。综上所述, 南亚热带森林中土壤线虫多度、多样性和群落结构对森林演替的响应略有不同, 演替过程中土壤环境因素的趋同是导致针阔叶混交林和季风常绿阔叶林中土壤线虫多样性和群落特征相似的主要原因。  相似文献   

14.
We studied the distribution and abundance of nematodes in one of the most extreme terrestrial environments in the world, at Machu Picchu, King George Island, off the coast of Admiralty Bay, Antarctica. We can report that the nematode community structure under the two most common plant covers was composed of three to four species. These species were found to belong functionally to microbial and omnivore/predator feeding types. Abundances of each of the nematode species were found to be negatively correlated to soil water content, generally decreasing their abundance with increasing soil water content. The results of this study demonstrate the importance of moisture availability to the nematode community and its species composition in this Antarctic soil ecosystem.  相似文献   

15.
Vegetation cover is known to act as an abiotic mediator influencing the structure of soil fauna communities in arid and semi-arid ecosystems. The aim of the current research was to determine the spatial dispersion of the soil free-living nematode community under the canopy of Cercidium praecox and Prosopis laevigata during the rainy season. These shrubs are the dominant plant associations in the western part of the Tehuacán-Cuicatlán Valley in Mexico. Soil samples were taken from each 10-cm depth between 0 and 50 cm in August 2004. Our results demonstrated that the abundance and structure of the soil free-living nematode communities in the study area were strongly dependent on plant effects, specified by limited factors such as soil moisture and organic matter availability. The greatest degree of abundance of soil-free-living nematodes (88%) was found in the upper (0–10 cm) soil layer. Plant parasites were the most abundant trophic group under the two plants (58 and 36% under Parkinsonia (Cercidium) praecox and Prosopis laevigata, respectively), whereas omnivore-predators were the most dominant (96%) in inter-plant spaces. The fungivore/bacterivore (F/B) ratio was found to be the most useful tool of the ecological indices tested in the present study, reflecting the vertical distribution of the free-living nematode communities beneath different plant species in the different soil layers. The soil free-living nematode communities and their vertical distribution were found to be affected by plant ecophysiological adaptation, soil moisture, and the interaction between them.  相似文献   

16.
线虫是陆地生态系统中数量最多的一类无脊椎后生动物,在土壤碎屑食物网中占据多个营养级,并在能量流动和养分循环中发挥重要的生态功能.土壤线虫的群落结构和多样性水平可以反映生态系统功能的变化.多年来,过度放牧等不合理的开发利用导致我国大面积的草原处在不同程度的退化之中,外源性养分输入是维持其养分平衡进而恢复其生态和生产功能的重要措施.本研究以内蒙古锡林郭勒退化草原为对象,就氮磷输入对土壤线虫丰度和群落结构的单独效应和交互效应进行了研究.本研究获得线虫38属,其中垫咽属、滑刃属、索努斯属和盾垫属是该退化草原线虫群落优势属.氮输入降低了土壤线虫总丰度、捕食杂食线虫丰度以及植物寄生线虫丰度,而磷输入提高了土壤线虫总丰度、食真菌线虫丰度、捕食杂食类线虫丰度以及植物寄生线虫丰度,氮输入抑制了磷输入对线虫总丰度、捕食杂食线虫和植物寄生线虫丰度的促进作用.氮磷输入对线虫多样性无影响,可能与不同养分输入下稳定的植物群落多样性有关.氮输入显著提升了退化草原线虫成熟度指数,降低了植物寄生线虫成熟度指数(PPI),并且能缓解磷输入对PPI和瓦斯乐斯卡指数的负面作用,表明氮输入提高退化草地土壤健康程度,促进线虫群落和食物网的稳定性.上述研究结果有助于从土壤生物学角度理解氮磷输入对退化草地恢复的影响机理.  相似文献   

17.
土壤线虫对气候变化的响应研究进展   总被引:2,自引:0,他引:2  
宋敏  刘银占  井水水 《生态学报》2015,35(20):6857-6867
全球变化对陆地生态系统功能具有重要而深远的影响。陆地生态系统地下部分具有重要的生态功能,其组成及结构对气候变化的响应将进一步减缓或加剧全球化进程。土壤线虫在各类生态系统中分布十分广泛,是地下食物网的重要组分,在维持土壤生物多样性及营养物质循环过程中发挥重要作用,其组成及结构对不同气候变化驱动因子的响应机制与模式不尽相同。增温及降水格局变化主要是通过改变线虫生境而直接影响其种群密度与结构,两者通常表现为正效应且作用效果随处理时间的延长而增强。CO2与大气氮沉降主要是通过影响地上植被,凋落物质量,土壤理化性质等间接过程影响土壤线虫。同时,不同的全球变化因子之间存在着复杂的交互作用,深入理解这些因子之间交互作用对线虫群落的影响模式与机制对于探讨未来气候变化情景下生态统生物多样性及养分循环过程具有重要的理论指导意义。  相似文献   

18.
张俊华  郑国琦 《生态学杂志》2016,27(5):1647-1656
宁夏枸杞具有很高的药用价值和营养价值,在宁夏大面积种植,带来了巨大的经济效益.研究不同条件下宁夏枸杞根际土壤线虫群落特征,对防止枸杞园土壤退化具有重要意义.以宁夏枸杞之乡——中宁为研究区,系统分析了季节、树龄和土层对枸杞根际土壤线虫数量和生态指数的影响.结果表明: 夏季宁夏枸杞根际土壤线虫数量最多,小杆属和拟丽突属为优势属;春季线虫数量最少,小杆属、针属和盘旋属为优势属;从春季到秋季,线虫稀有属种类和个体密度逐渐减少.随着树龄的增加,夏季根际土壤线虫总数逐渐减少;春季和秋季枸杞根际线虫总数先增加后减少,其中9年树龄根际土壤线虫总数最多.各树龄根际均为食细菌线虫所占比例最大,食真菌线虫和捕食-杂食类线虫比例很小,树龄<3年和>9年时植物寄生线虫比例相对较大.夏季枸杞根际20~40 cm比0~20 cm土壤线虫数量增加49.4%.随着树龄的增加,枸杞根际土壤线虫多样性指数、均匀度指数和丰富度指数均呈减小-增大-减小的趋势,而优势度指数先减小后增大.土壤pH值与土壤线虫优势度指数呈显著正相关;土壤有机质和速效磷与植物寄生线虫分别呈显著正相关和负相关;土壤碱解氮与线虫总数呈显著正相关;速效钾与线虫多个生态指数均呈显著负相关.整体上,随着树龄的增加,春季和秋季土壤线虫数量先增加后减少,夏季土壤线虫数量呈逐渐减少的趋势;线虫多样性下降,土壤逐渐退化.此外,在幼林和树龄>9年后需要抑制土壤植物寄生线虫的繁殖,以减少后期因线虫引起的病害.  相似文献   

19.
选择沙漠常绿灌木丛枝霸王(Zygophyllum dumosum)群落及群落间的开阔地带采样,研究土壤线虫和原生动物的种群大小、物种组成及营养结构.本研究共获线虫29属,裸变形虫33属90种;在所获各类原生动物中,鞭毛虫和纤毛虫均为食细菌类群,而鞭毛虫个体数量最多;在沙漠生态系统中,土壤湿度被认为是影响生物活性的最重要因素之一.然而,本研究显示:土壤湿度对线虫和原生动物是否重要取决于这些动物对土壤湿度的生理生态适应能力;土壤线虫和原生动物的体型大小、生活史策略和活动能力与土壤湿度的有效性相关不显著,但它们对微生物和微小土壤动物区系间的相互作用有重要影响,在干旱生态系统中,这种影响能够显著改变土壤生态系统短期的养分循环.本研究还表明,土壤线虫和原生动物种群间的关系主要取决于两者营养类群组成的变化.  相似文献   

20.
Altered temperature profiles resulting in increased warming and freeze–thaw cycle (FTC) frequency pose great ecological challenges to organisms in alpine and polar ecosystems. We performed a laboratory microcosm experiment to investigate how temperature variability affects soil bacterial cell numbers, and abundance and traits of soil microfauna (the microbivorous nematode Scottnema lindsayae) from McMurdo Dry Valleys, Antarctica. FTCs and constant freezing shifted nematode body size distribution towards large individuals, driven by higher mortality among smaller individuals. FTCs reduced both bacterial and nematode abundance, but bacterial cell numbers also declined under warming, demonstrating decoupled consumer–prey responses. We predict that higher occurrence of FTCs in cold ecosystems will select for large body size within soil microinvertebrates and overall reduce their abundance. In contrast, warm temperatures without FTCs could lead to divergent responses in soil bacteria and their microinvertebrate consumers, potentially affecting energy and nutrient transfer rates in soil food webs of cold ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号