首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin and glucagon degradation by rat kidney homogenates and subcellular fractions was examined under a variety of conditions including high and low substrate concentrations, at pH 4 and pH 7, with and without glutathione. At high insulin concentration (4.1 · 10?5 M) insulin degradation by the homogenate was greatest at pH 4 but at low insulin concentration (1 · 10?10 M) insulin degradation was greatest at pH 7. At either high or low glucagon concentration glucagon degradation by the homogenate was greatest at pH 7. Glutathione at pH 7 stimulated insulin degradation at high insulin concentrations and inhibited insulin degradation at low concentrations. Glucagon degradation at pH 7 was inhibited at both high and low concentrations of glucagon by glutathione.Separation of kidney into cortex and medulla prior to homogenation produced a pattern of insulin and glucagon degradation identical to the whole homogenate but glucagon degradation by the medulla was greater than by the cortex.Examination of degradation by subcellular fractions revealed that at high concentration at neutral pH most insulin was degraded by the 100 000 × g pellet but at low insulin concentrations over 90% of the activity was in the 100 000 × g supernatant. At pH 7, at both high and low concentrations, most glucagon-degrading activity was in the 100 000 × g pellet, although the cytosol also had activity. At pH 4 most degradation occurred in the lysosomal fractions.Separation into cortex and medulla again showed similar distribution of activity as the whole gland with the medulla having more glucagon-degrading activity than the cortex. With low insulin concentrations the cortex 100 000 × g supernatant had higher relative specific activities than the medulla supernatant.Examination of recoveries of enzyme activity revealed that the subcellular fractions consistently had markedly less insulin-degrading activity than the original homogenate. This loss of activity was only discernible when insulin degradation was performed at pH 7 at low substrate concentrations. Comparable losses of glucagon-degrading activity were not seen.  相似文献   

2.
The development of a phytoplankton bloom was studied by placing a drogue in a patch of cold upwelled water and following the water mass for 4–5 days. Chaetoceros compressus Laud and Skeletonemacostatum (Grev.) Cleve dominated the bloom which reached its peak in 3 days. In this period chlorophyll a concentrations increased by 19.2 mg · m?3 in the euphotic zone while the concomitant decrease in nitrate concentration was 18.7 mg-at. NO3-N · m?3. There was an overall increase in the concentration of protein with the highest concentration (412.9mg · m?3) being measured just prior to the peak of the bloom. Carbohydrate concentrations increased rapidly during the day but decreased at night. The pattern of carbon-14 assimilation at the 50% light intensity was characterised by high activity in the polysaccharide fraction as the bloom developed, but at the peak of the bloom a greater percentage of the label was found in the ethanol-soluble fraction. The percent incorporation into protein was greater at night than during the day. These physiological changes are related to the growth pattern of the bloom.  相似文献   

3.
Apparent Km- and Vmax-values of nuclear styrene 7,8-oxide hydrolase were determined at different protein concentrations. In the protein concentrations range used no significant differences in the apparent Km-values were observed. The influence of the incubation with different modifiers (i.e. SKF-525A, metyrapone, 1,2-epoxy-3,3,3 trichloropropane, cyclohexene oxide) at two different concentrations on this enzyme activity was also determined. Cyclohexene oxide and 1,2-epoxy-3,3,3-trichloropropane, two well known inhibitors of the microsomal epoxide hydrolase(s) caused a marked inhibition, metyrapone had a strong activating effect whereas SKF-525A had no effect. In vivo pretreatment with phenobarbital significantly induced the nuclear epoxide hydrolase whereas β-naphthoflavone caused a lower degree of induction. This pattern is quantitatively different but qualitatively very similar to the microsomal one. Moreover a toxifying to detoxifying enzymatic activity balance is attempted for the metabolization of the alkenic double bond of styrene, taking into account the ratio between the styrene monooxygenase (toxifying enzyme) and the styrene 7,8-oxide hydrolase (detoxifying enzyme) after the above mentioned pretreatments, both in the microsomal and nuclear fractions.  相似文献   

4.
Insulin and glucagon degradation by rat kidney homogenates and subcellular fractions was examined under a variety of conditions including high and low substrate concentrations, at pH 4 and pH 7, with and without glutathione. At high insulin concentration (4.1 - 10(-5) M) insulin degradation by the homogenate was greatest at pH 4 but at low insulin concentration (1 - 10(-10) M) insulin degradation was greatest at pH 7. At either high or low glucagon concentration glucagon degradation by the homogenate was greatest at pH 7. Glutathione at pH 7 stimulated insulin degradation at high insulin concentrations and inhibited insulin degradation at low concentrations; Glucagon degradation at pH 7 was inhibited at both high and low concentrations of glucagon by glutathionemseparation of kidney into cortex and medulla prior to homogenation produced a pattern of insulin and glucagon degradation identical to the whole homogenate but glucagon degradation by the medulla was greater than by the cortex. Examination of degradation by subcellular fractions revealed that at high concentration at neutral pH most insulin was degraded by the 100 000 X g pellet but at low insulin concentrations over 90% of the activity was in the 100 000 X g supernatant; At pH 7, at both high and low concentrations, most glucagon-degrading activity was in the 100 000 X g pellet, although the cytosol also had activity; At pH 4 most degradation occurred in the lysosomal fractions. Separation into cortex and medulla again showed similar distribution of activity as the whole gland with the medulla having more glucagon-degrading activity than the cortex. With low insulin concentrations the cortex 100 000 X g supernatant had higher relative specific activities than the medulla supernatant. Examination of recoveries of enzyme activity revealed that the subcellular fractions consistently had markedly less insulin-degrading activity than the original homogenate. This loss of activity was only discernible when insulin degradation was performed at pH 7 at low substrate concentrations. Comparable losses of glucagon-degrading activity were not seen.  相似文献   

5.
Diurnal changes in the regulatory metabolite, fructose-2,6-bisphosphate (F26BP), and key metabolic intermediates of sucrose biosynthesis were studied in maize (Zea mays L. cv Pioneer 3184) during a day-night cycle. Whole leaf concentrations of dihydroxyacetonephosphate (DHAP) and fructose 1,6-bisphosphate changed markedly during the photoperiod. DHAP concentration was correlated positively with the rate of sucrose formation in vivo (assimilate export plus sucrose accumulation) and extractable activity of sucrose phosphate synthase (SPS). The changes closely followed net photosynthetic rate, which tracked irradiance. The other metabolic intermediates measured (glucose 6-phosphate, fructose 6-phosphate, and UDP-glucose) were either relatively constant over the 24 hour period or changed in a different pattern. Diurnal changes in leaf F26BP concentrations were pronounced, and fundamentally different than the pattern reported with other species. F26BP concentration decreased at the beginning of the day and remained low and constant; a 3- to 4-fold increase occurred with darkness, and slowly declined thereafter. In general, leaf F26BP concentration was negatively correlated with net photosynthetic rate, and also leaf DHAP concentration. Consequently, co-ordination of the regulation of cytosolic fructose 1,6-bisphosphatase and SPS was apparent. The results support the postulate that in maize leaves the activation state of SPS may be dependent on availability of DHAP and possibly other metabolites.  相似文献   

6.
Aminopeptidase-I is polymorphic in the marine bivalve Mytilus edulis and catalyzes the liberation of neutral and aromatic N-terminal amino acids from oligopeptides. The enzyme is abundant in the digestive gland, where it is lysosomal, but is present in several other tissues. Temporal variation in enzyme activity was monitored for 2.5 years in two natural populations. The temporal pattern of variation was similar in gill, mantle, and digestive gland tissues; variations occurred over both short and long time periods. Enzyme activity under ambient temperature conditions was seasonally related to temperature in gill and digestive gland, but varied with reproductive cycle in mantle tissue. In the last, maximum activity corresponded to the postreproductive period in each population. Enzyme activity varies in response to tissue-specific metabolic demands. Population differences in enzyme activity are due to both genotype-dependent enzyme activity, since allele frequencies differ between populations, and environmental salinity. High salinity induces high activity, which is a response to the need for higher intracellular concentrations of free amino acids for cell volume regulation. Salinity has comparable effects on enzyme activity in natural and experimental populations. Genotype-dependent specific activities are a consequence of both differing kinetic properties among genotypes [Koehn, R. K., and Siebenaller, J. S. (1981). Biochem. Genet. 19:1143] and genotype-specific concentrations of enzyme protein that change in response to environmental salinity.  相似文献   

7.
The 20S proteasome was purified from oocytes of the starfish Asterina pectinifera and its enzymatic properties were investigated. The chymotrypsin-like activities were potently inhibited by PSI as well as MG115, whereas the trypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were not or only weakly inhibited by PSI and MG115. The inhibitory ability of MG115 toward germinal vesicle breakdown (GVBD) coincided with those toward the trypsin-like and PGPH activities, and PSI showed no inhibitory effect on GVBD. We have previously reported that the inhibition pattern toward GVBD of peptidyl-argininals, which potently inhibited the proteasomal trypsin-like activity rather than the chymotrypsin-like activity, correlated with the inhibition pattern toward the chymotrypsin-like activity of the proteasome. These results, together with the peptidyl-argininals scarcely inhibiting the PGPH activity at concentrations sufficient for the inhibition toward GVBD, indicate that both the chymotrypsin-like and trypsin-like activities, but not the PGPH activity, of the proteasome are responsible for degradation of the physiological substrate during starfish oocyte maturation. It was also suggested that the inhibition of a single catalytic site of the proteasome is not sufficient for prevention of the proteasomal function.  相似文献   

8.
The effect of calmodulin on the activity of the plasma membrane Ca-ATPase was investigated on plasma membranes purified from radish (Raphanus sativus L.) seedlings. Calmodulin stimulated the hydrolytic activity and the transport activity of the plasma membrane Ca-ATPase to comparable extents in a manner dependent on the free Ca2+ concentration. Stimulation was marked at low, nonsaturating Ca2+ concentrations and decreased increasing Ca2+, so that the effect of calmodulin resulted in an increase of the apparent affinity of the enzyme for free Ca2+. The pattern of calmodulin stimulation of the plasma membrane Ca-ATPase activity was substantially the same at pH 6.9 and 7.5, in the presence of ATP or ITP, and when calmodulin from radish seeds was used rather than that from bovine brain. At pH 6.9 in the presence of 5 micromolar free Ca2+, stimulation of the plasma membrane Ca-ATPase was saturated by 30 to 50 micrograms per milliliter bovine brain calmodulin. The calmodulin antagonist calmidazolium inhibited both basal and calmodulin-stimulated plasma membrane Ca-ATPase activity to comparable extents.  相似文献   

9.
The outer membrane of turnip (Brassica rapa L.) mitochondria was isolated by incubating the mitochondria with a dilute digitonin solution and differential centrifuging. The outer membrane fraction was not contaminated by inner membrane enzymes and lacked an NADPH-cytochrome c reductase. However it possessed very active NADH-cytochrome c, dichloroindophenol and ferricyanide reductases which were insensitive to antimycin A, Amytal and low (less than 10 μm) concentrations of Dicumarol. p-Chloromercuribenzoate (ClHgBzO?) and high concentrations (greater than 10 μm) of Dicumarol inhibited the reductases, ClHgBzO? almost completely. Preincubation of the outer membrane with NADH protected it from ClHgBzO? inhibition. An acid phosphatase and an NADPH-ferricyanide reductase were also detected, but the latter was only loosely bound to the membrane. The NADH dehydrogenase of the outer membrane was insensitive to ethylene glycol-bis(β-aminoethyl ether)N,N′-tetraacetate (1 mm) and was not stimulated by CaCl2 (0.5 mm), thus differing from the external NADH oxidase of the inner membrane (Coleman, J. O. D., and Palmer, J. M. (1971) FEBS Lett., 17, 203–208). Respiratory-linked oxidation of exogenous NADH by intact mitochondria showed a similar pattern of inhibition by ClHgBzO? as did the outer membrane, but was inhibited strongly by low concentrations of Dicumarol (5 μm inhibited by 70%).  相似文献   

10.
Insulin and glucagon degradation by rat kidney homogenates and subcellular fractions was examined under a variety of conditions including high and low substrate concentrations, at pH 4 and pH 7, with and without glutathione. At high insulin concentration (4.1 · 10−5 M) insulin degradation by the homogenate was greatest at pH 4 but at low insulin concentration (1 · 10−10 M) insulin degradation was greatest at pH 7. At either high or low glucagon concentration glucagon degradation by the homogenate was greatest at pH 7. Glutathione at pH 7 stimulated insulin degradation at high insulin concentrations and inhibited insulin degradation at low concentrations. Glucagon degradation at pH 7 was inhibited at both high and low concentrations of glucagon by glutathione.Separation of kidney into cortex and medulla prior to homogenation produced a pattern of insulin and glucagon degradation identical to the whole homogenate but glucagon degradation by the medulla was greater than by the cortex.Examination of degradation by subcellular fractions revealed that at high concentration at neutral pH most insulin was degraded by the 100 000 × g pellet but at low insulin concentrations over 90% of the activity was in the 100 000 × g supernatant. At pH 7, at both high and low concentrations, most glucagon-degrading activity was in the 100 000 × g pellet, although the cytosol also had activity. At pH 4 most degradation occurred in the lysosomal fractions.Separation into cortex and medulla again showed similar distribution of activity as the whole gland with the medulla having more glucagon-degrading activity than the cortex. With low insulin concentrations the cortex 100 000 × g supernatant had higher relative specific activities than the medulla supernatant.Examination of recoveries of enzyme activity revealed that the subcellular fractions consistently had markedly less insulin-degrading activity than the original homogenate. This loss of activity was only discernible when insulin degradation was performed at pH 7 at low substrate concentrations. Comparable losses of glucagon-degrading activity were not seen.  相似文献   

11.
Soluble and mitochondrial malic dehydrogenases (MDH) were isolated from root tips of the halophyte Tamarix tetragyna L. grown in the presence and absence of NaCl. The activity of the enzymes isolated from root tips grown in the presence of NaCl was lower than that of the enzymes isolated from roots grown in absence of NaCl. The mitochondrial MDH was much more sensitive to salinity than the soluble MDH. The soluble enzyme from roots grown in NaCl had a higher Km for malate and lower Km for NAD than enzyme from the control roots. Addition of NaCl in vitro at 72 mM significantly stimulated the reductive activity of soluble MDH, while higher NaCl concentrations (240 mM and above) depressed enzyme activity. The inhibition of enzyme activity by various salts was found to be in the order MgCl2 > NaCl = KCl > Na2SO4. Mannitol at equiosmotic concentrations had no effect. Substrate inhibition, typical for oxaloacetate oxidation, was not observed at high NaCl concentrations in vitro and high substrate concentrations neutralized the inhibitory effect of NaCl. Increased coenzyme concentrations had no effect. In vitro NaCl increased the Km for malate and oxaloacetate already at relatively low concentrations. At the same time NaCl decreased the Km for NAD and NADH. The inhibitory effect of NaCl on enzyme activity seems not to be due to the effect on the Km alone. Soluble and mitochondrial MDH had different responses to pH changes, mitochondrial MDH being more sensitive. Mitochondrial MDH released from the particles had a similar response to that of the entire particles. Changes of pH modified the effect of NaCl on enzyme activity. It was postulated that NaCl apparently induces conformational changes in the enzyme.  相似文献   

12.
Thermophilic, aerobic bacteria of the genus Thermus were isolated from submarine alkaline hot springs in Iceland. Five submarine hot springs were sampled, and all had viable counts of Thermus spp. of about 103 CFU/ml. All submarine strains grew in the presence of NaCl at 3% or higher, but no strains from terrestrial hot springs would grow at concentrations higher than 1% NaCl. The growth rate of submarine Thermus strains was not stimulated by NaCl and was reduced at NaCl concentrations higher than 1%. The pattern of growth of these isolates on single carbon sources was similar to that of terrestrial isolates.  相似文献   

13.
The lactate dehydrogenase isoenzyme pattern has been determined in different murine lymphocytic cell populations. In each cell population, the LDH activity was predominantly found in the LDH-4 and LDH-5 fractions. The percentage LDH-5 activity was significantly higher in B cells than in T cells. The same is true for lymphocytes from the spleen versus lymph node lymphocytes. The percentage LDH-5 activity is significantly higher in peripheral T lymphocytes than in thymocytes. Enrichment of the more mature thymocytes of the thymocyte cell pool by either cortisone treatment in vivo or gradient centrifugation on bovine serum albumin (BSA) results in a decrease of LDH-1 and LDH-2 fractions. In the cortisone-treated group, the shift in the LDH pattern is accompanied by a significant increase of LDH-5 and LDH-4 fractions, whereas in the BSA group only the LDH-4 fraction increases.  相似文献   

14.
The response of the musculature of male Schistosoma mansoni to various physical and ionic environments was determined. Contractile activity and tension of the parasite's musculature decreased when they were incubated in buffered salt solutions having an osmolality greater than 300 mOsm, a pH less than 6.8, or a temperature greater than 39 C. Except for potassium, high concentrations of inorganic ions reduced the tension of the parasite's musculature; high concentrations of potassium increased tension. In general the contraction rate of the male schistosome decreased when the concentration of an inorganic ion was below or above that found in Hanks' balanced salts solution. These results indicate that the musculature of S. mansoni is similar to smooth muscle found in mammals.  相似文献   

15.
Lysozyme (mucopeptide N-acetylmuramylhydrolase EC 3.2.1.17) activity has been found in the hemolymph, digestive gland, and headfoot extracts of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. Partial purification of the bacteriolytic enzyme was attained by gel chromatography on Sephacryl S-200 and active lytic fractions were concentrated by Amicon filtration. The properties of the lytic enzymes from the three tissue extracts were identical. Enzyme activity was determined by the rate of lysis of cell wall suspension of Micrococcus lysodeikticus. Lysis of the cell walls was accompanied by a release of reducing sugar groups and N-acetylhexosamines. The enzyme was stable to heating at 100 C for 2 min and had an optimum activity at pH 4.5 to 5.0 in 0.066 M glycylglycine buffer. Low concentrations (5 mM) of NaCl, KCl, and LiCl increased the activity of the enzyme, whereas high concentrations (25 mM) of the same ions caused about 50% inhibition of the enzyme activity. MgCl2 and CaCl2 also inhibited the enzyme activity. Addition of 1 mM EDTA or EGTA resulted in about a twofold increase in enzyme activity. Double reciprocal plots of enzyme velocities and substrate concentrations yielded an apparent Michaelis-Menten constant (Km) of 0.05 ± 0.01 mg/ml of M. lysodeikticus.  相似文献   

16.
Excessive mobilization of body reserves during the transition from pregnancy to lactation imposes a risk for metabolic diseases on dairy cows. We aimed to establish an experimental model for high v. normal mobilization and herein characterized performance, metabolic and endocrine changes from 7 weeks antepartum (a.p.) to 12 weeks postpartum (p.p.). Fifteen weeks a.p., 38 pregnant multiparous Holstein cows were allocated to two groups that were fed differently to reach either high or normal body condition scores (HBCS: 7.2 NEL MJ/kg dry matter (DM); NBCS: 6.8 NEL MJ/kg DM) at dry-off. Allocation was also based on differences in body condition score (BCS) in the previous and the ongoing lactation that was further promoted by feeding to reach the targeted BCS and back fat thickness (BFT) at dry-off (HBCS: >3.75 and >1.4 cm; NBCS: <3.5 and <1.2 cm). Thereafter, both groups were fed identical diets. Blood samples were drawn weekly from 7 weeks a.p. to 12 weeks p.p. to assess the serum concentrations of metabolites and hormones. The HBCS cows had greater BCS, BFT and BW than the NBCS cows throughout the study and lost more than twice as much BFT during the first 7 weeks p.p. compared with NCBS. Milk yield and composition were not different between groups, except that lactose concentrations were greater in NBSC than in HBCS. Feed intake was also greater in NBCS, and NBCS also reached a positive energy balance earlier than HBCS. The greater reduction in body mass in HBCS was accompanied by greater concentrations of non-esterified fatty acids, and β-hydroxybutyrate in serum after calving than in NBCS, indicating increased lipomobilization and ketogenesis. The mean concentrations of insulin across all time-points were greater in HBCS than in NBCS. In both groups, insulin and IGF-1 concentrations were lower p.p than in a.p. Greater free thyroxine (fT4) concentrations and a lower free 3-3′-5-triiodothyronine (fT3)/fT4 ratio were observed in HBCS than in NBCS a.p., whereas p.p. fT3/fT4 ratio followed a reverse pattern. The variables indicative for oxidative status had characteristic time courses; group differences were limited to greater plasma ferric reducing ability values in NBSC. The results demonstrate that the combination of pre-selection according to BCS and differential feeding before dry-off to promote the difference was successful in obtaining cows that differ in the intensity of mobilizing body reserves. The HBCS cows were metabolically challenged due to intense mobilization of body fat, associated with reduced early lactation dry matter intake and compromised antioxidative capacity.  相似文献   

17.
Understanding the salt resistance mechanism of wild soybean is important in improving salt tolerance of cultivated soybean. Therefore, we comparatively analyzed effects of NaCl on photosynthesis, antioxidant enzyme activity, and ion distribution in a cultivated (Glycine. max) and a wild (Glycine soja) soybean to study the salt resistance mechanism of the G. soja. The results showed that more Na+ was accumulated in the G. soja roots than in the G. max roots, but the Na+ in the G. soja leaves was much less than that observed in the G. max leaves. The Na+ concentrations in the G. soja leaves were not high enough to affect the photosynthetic apparatus, which was demonstrated by less inhibition of photosynthetic activity, stomatal conductance, carboxylation efficiency in the G. soja leaves than in the G. max leaves after treated with different concentrations of NaCl. Meanwhile, there were no significant changes in intercellular CO2 concentration, maximum PSII quantum yield, and relative water content in the G. soja leaves after NaCl treatment, while they significantly decreased in the G. max leaves. The non-photochemical quenching and the activities of superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) in the G. soja leaves increased with the increasing of NaCl concentrations, whereas only the activity of superoxide dismutase increased in G. max leaves. Based on these results, we suggested that the G. soja is able to accumulate higher levels of Na+ in its roots, and prevent the transportation of Na+ to leaves to protect photosynthetic apparatus from salt damage.  相似文献   

18.
This study, aimed at elucidating changes in the foliar and cambial behavior in Azadirachta indica (Neem tree) due to coal-smoke pollution, has revealed inhibitory effects of pollution stress on leaf pigments concentrations, nitrate reductase activity and the contents of reducing sugars and total N content, whereas stimulatory effects were given on stomatal index and nitrate and sulphur contents. Under smoke effects, stomatal conductance was low, leading to a drop in the net photosynthetic rate and a rise in the internal CO2 concentration of leaf. Cambial reactivation in the stem was delayed at the polluted site. Although the total span of the cambial activity was reduced, greater amount of wood was observed to accumulate in the stem axis under heavy pollution stress. Vessel proportion in the wood increased, whereas size of vessel elements and xylem fibers decreased. “Vulnerability factor” (ratio between mean vessel diameter and mean vessel abundance) and “mesomorphic ratio” (multiplication product of vulnerability factor and mean length of vessel element) of the stem–wood, both declined with increase in the pollution stress, thus indicating a tendency of the species for shifting towards xeromorphy when grown under stress. Given the opposite trends of photosynthetic rate and wood increment, the carbon-partitioning pattern rather than the photosynthetic rate seems to have influenced the accumulation of new wood. The Neem tree proves to be suitable for growing in the polluted areas.  相似文献   

19.
In strips of duodenum from 14-day chick embryos explanted into defined medium, alkaline phosphatase (ALP) activity accumulated in the tissue at a faster rate than in vivo for about 48 hr, but failed to increase thereafter. The addition of thyroxine (T4) to the medium at 10?8M or less both enhanced the early accumulation and elicited a very large increase in ALP activity comparable to that normally occurring during the last 2 days in ovo. Activity with phenylphosphate (PhP) was more strongly affected than that with β-glycerophosphate (βGP), so that the high PhPβGP ratio attained in vivo at 18 days was reached after 24 hr in T4-supplemented medium. Hydrocortisone (HC) evoked APL activity only slightly above that in unsupplemented medium and only during the first 48 hr in culture, but it precociously elevated PhPβGP ratio to the normal maximum. In the presence of T4 or HC, maltase activity rose in explanted strips at the same rate as in the intact duodenum, but it lagged in unsupplemented medium. Assay of the medium revealed, however, that under all conditions of culture a large amount of both maltase and ALP activity had been released from the tissue. This effect was especially pronounced in the presence of T4, so that explants and medium together accumulated ALP and maltase equivalent to the high peaks of activity found in the intact duodenum at hatching. With 10?8M T4, ALP activity began to rise above that of control explants after 8 hr, with accumulation in the medium beginning about 4 hr later. Combining 2 × 10?6M HC with a range of T4 concentrations produced greater than additive effects, particularly with ALP, but did not lead to enhanced retention of either enzyme in the tissue strips. Prolactin, pentagastrin, and insulin were without effect alone, but the latter inhibited the effects of both T4 and HC.  相似文献   

20.
Complete removal of plants and soil to exposed bedrock, in order to eradicate the Hole-in-the-Donut (HID) region of the Everglades National Park, FL, of exotic invasive plants, presented the opportunity to monitor the redevelopment of soil and the associated microbial communities along a short-term restoration chronosequence. Sampling plots were established for sites restored in 1989, 1997, 2000, 2001, and 2003. The goal of this study was to characterize the activity and diversity of denitrifying bacterial populations in developing HID soils in an effort to understand changes in nitrogen (N) cycling during short-term primary succession. Denitrifying enzyme activity (DEA) was detected in soils from all sites, indicating a potential for N loss via denitrification. However, no correlation between DEA and time since disturbance was observed. Diversity of bacterial denitrifiers in soils was characterized by sequence analysis of nitrite reductase genes (nirK and nirS) in DNA extracts from soils ranging in nitrate concentrations from 1.8 to 7.8 mg kg−1. High levels of diversity were observed in both nirK and nirS clone libraries. Statistical analyses of clone libraries suggest a different response of nirS- and nirK-type denitrifiers to factors associated with soil redevelopment. nirS populations demonstrated a linear pattern of succession, with individual lineages represented at each site, while multiple levels of analysis suggest nirK populations respond in a grouped pattern. These findings suggest that nirK communities are more sensitive than nirS communities to environmental gradients in these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号