首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Meloidogyne incognita on the Big Jim, Jalapeno, and New Mexico No. 6 chile (Capsicum annuum) cultivars were investigated in microplots for two growing seasons. All three cultivars were susceptible to M. incognita and reacted similarly to different initial populations of this nematode. Severe stunting and yield suppressions occurred at all initial M. incognita densities tested ranging from 385 to 4,230 eggs and larvae/500 cm³ soil. Regression analysis of the microplot data from a sandy loam soil showed yield losses of 31% for the 1978 season and 25% for the 1979 season for the three cultivars for each 10-fold increase in the initial population of M. incognita.  相似文献   

2.
Microplot and field experiments were conducted to determine relationships of population densities of Meloidogyne spp. to performance of flue-cured tobacco. A 3-yr microplot study of these interactions involved varying initial nematode numbers (Pi).and use of ethoprop to re-establish ranges of nematode densities. Field experiments included various nematicides at different locations. Regression analyses of microplot data from a loamy sand showed that cured-leaf yield losses on ''Coker 319'' for each 10-fold increase in Pi were as follows: M. javanica and M. arenaria—-13-19%; M. incognita—5-10%; M. hapla—3.4-5%; and 3% for M. incognita on resistant ''Speight G-28'' tobacco. A Pi of 750 eggs and larvae/500 cm³ of soil of all species except M. hapla caused a significant yield loss; only large numbers of M. hapla effected a loss. M. arenaria was the most tolerant species to ethoprop. Root-gall indices for microplot and most field-nematicide tests also were correlated negatively with yield. Relationships of Pi(s) and necrosis indices to yield were best characterized by linear regression models, whereas midseason numbers of eggs plus larvae (Pm) and sometimes gall indices vs. yield were better characterized by quadratic models. The relation of field Pm and yield was also adequately described by the Seinhorst model. Degrees of root galling, root necrosis, yield losses, and basic rates of reproduction on tobacco generally increased from M. hapla to M. incognita to M. arenaria to M. javanica.  相似文献   

3.
Seven-day-old seedlings of two cultivars (Cristalina and UFV ITM1) of Glycine max were inoculated with 0, 3,000, 9,000, or 27,000 eggs of Meloidogyne incognita race 3 or M. javanica and maintained in a greenhouse. Thirty days later, plants were exposed to ¹⁴CO₂ for 4 hours. Twenty hours after ¹⁴CO₂ exposure, the root fresh weight, leaf dry weight, nematode eggs per gram of root, total and specific radioactivity of carbohydrates in roots, and root carbohydrate content were evaluated. Meloidogyne javanica produced more eggs than M. incognita on both varieties. A general increase in root weight and a decrease in leaf weight with increased inoculum levels were observed. Gall tissue appeared to account for most of the root mass increase in seedlings infected with M. javanica. For both nematodes there was an increase of total radioactivity in the root system with increased levels of nematodes, and this was positively related to the number of eggs per gram fresh weight and to the root fresh weight, but negatively related to leaf dry weight. In most cases, specific radioactivities of sucrose and reducing sugars were also increased with increased inoculum levels. Highest specific radioactivities were observed with reducing sugars. Although significant changes were not observed in endogenous levels of carbohydrates, sucrose content was higher than reducing sugars. The data show that nematodes are strong metabolic sinks and significantly change the carbon distribution pattern in infected soybean plants. Carbon partitioning in plants infected with nematodes may vary with the nematode genotype.  相似文献   

4.
The biological control of Meloidogyne arenaria on peanut (Arachis hypogaea) by Pasteuria penetrans was evaluated using a six x six factorial experiment in field microplots over 2 years. The main factors were six inoculum levels of second-stage juveniles (J2) of M. arenaria race 1 (0, 40, 200, 1,000, 5,000, and 25,000 J2/microplot, except that the highest level was 20,000 J2/microplot in 1995) and six infestation levels of P. penetrans as percentages of J2 with endospores attached (0, 20, 40, 60, 80, and 100%). The results were similar in 1994 and 1995. Numbers of eggs per root system, J2 per 100 cm³ soil at harvest, root galls, and pod galls increased with increasing nematode inoculum levels and decreased with increasing P. penetrans infestation levels (P ≤ 0.05), except that there was no effect of P. penetrans infestation levels on J2 per 100 cm³ soil in 1994 (P> 0.05). There were no statistical interaction effects between the inoculum levels of J2 and the infestation levels of P. penetrans (P > 0.05). When the infestation level was increased by 10%, the number of eggs per root system, root galls, and pod galls decreased 7.8% to 9.4%, 7.0% to 8.5%, and 8.0% to 8.7% in 1994 and 1995, respectively, whereas J2 per 100 cm³ soil decreased 8.8% in 1995 (P ≤ 0.05). The initial infestation level of P. penetrans contributed 81% to 95% of the total suppression of pod galls, whereas the infection of J2 of the subsequent generations contributed only 5% to 19% suppression of pod galls. The major suppressive mechanism of M. arenaria race 1 by P. penetrans on peanut is the initial endospore infestation of J2 at planting.  相似文献   

5.
Eggs of Meloidogyne arenaria race 1 were encapsulated in calcium alginate for use as inoculum to infest peanut field plots. Some eggs within the capsules remained viable up to 10 weeks after preparation. A field site was successfully infested at peanut planting and (or) 6 weeks later. Dual applications of nematode inoculum (at planting and 6 weeks later) were superior to single applications (at planting or 6 weeks after planting). Field-site infestation levels at the end of the first year were related to the amount of inoculum dispersed and timing of the infestation (P = 0.001). Peanut yield was only slightly affected in the first year, but significant (P = 0.02) yield suppression occurred during the second year after field infestations. The negative relationship between the numbers of M. arenaria eggs and juveniles per 500 cm³ soil in the fall and the percentage of peanut hull galled the second year was described by a quadratic model (P = 0.002, R² = 0.41).  相似文献   

6.
The influence o f various crop rotations and nematode inoculum levels on subsequent population densities of Meloidogyne incognita races 1 and 3 were studied in microplots. Ten different 3-year sequences o f cotton, corn, peanut, or soybean, all with cotton as the 3rd-year crop, were grown in microplots infested with each race. Cotton monoculture, two seasons o f corn, or cotton followed by corn resulted in high race 3 population densities and severe root galling on cotton the 3rd year. Peanut for 2 years preceding cotton most effectively decreased the race 3 population and root galls on cotton the 3rd year. Race 1 did not significantly influence cotton growth or yield at initial populations of up to 5,000 eggs/500 cm³ soil. At 5,000 eggs/500 cm³, cotton growth was suppressed by race 3 but yield was not affected.  相似文献   

7.
Tomato seedlings in a growth chamber were inoculated with 150 Meloidogyne incognita eggs and 25 infective juveniles (IJ)/cm² of Steinernema feltiae, S. riobrave, or Heterorhabditis bacteriophora. With the exception of seedling roots treated with H. bacteriophora, all seedlings treated with entomopathogenic nematodes had fewer M. incognita juveniles inside roots and produced fewer eggs than the control seedlings. Tomato plants in the greenhouse were infested with 4,000 M. incognita eggs and treated 2 weeks before, 1 week before, at the same time, 1 week after, or 2 weeks after with 25 or 125 IJ/cm² of S. feltiae, S. riobrave, or H. bacteriophora. Plants with pre- and post-infestation applications of S. feltiae or S. riobrave suppressed M. incognita. Plants treated with H. bacteriophora 1 week before and at the time of infestation suppressed M. incognita. Increasing the rate of H. bacteriophora and S. feltiae from 25 to 125 IJ/cm² improved M. incognita suppression.  相似文献   

8.
Intensive vegetable production areas were surveyed in the provinces of Almería (35 sites) and Barcelona (22 sites), Spain, to determine the incidence and identity of Meloidogyne spp. and of fungal parasites of nematode eggs. Two species of Meloidogyne were found in Almería—M. javanica (63% of the samples) and M. incognita (31%). Three species were found in Barcelona, including M. incognita (50%), M. javanica (36%), and M. arenaria (14%). Solanaceous crops supported larger (P < 0.05) nematode numbers than cucurbit crops in Almería but not in Barcelona. Fungal parasites were found in 37% and 45% of the sites in Almería and Barcelona, respectively, but percent parasitism was never greater than 5%. Nine fungal species were isolated from single eggs of the nematode. The fungi included Verticillium chlamydosporium, V. catenulatum, Fusarium oxysporum, F. solani, Fusarium spp., Acremonium strictum, Gliocladium roseum, Cylindrocarpon spp., Engiodontium album, and Dactylella oviparasitica. Two sterile fungi and five unidentified fungi also were isolated from Meloidogyne spp. eggs.  相似文献   

9.
Meloidogyne chitwoodi reduced the growth of winter wheat ''Nugaines'' directly in relation to nematode density in the greenhouse, The relationship between top dry weight and initial nematode density suggests a tolerance limit of Nugaines wheat to M. chitwoodi of between 0.03 and 0.18 eggs/cm³ of soil; the value for relative minimum plant top weight was 0.45 g and 0.75 g, respectively. Growth of wheat in field microplots containing four population densities (0.003, 0.05, 0.75 and 9 eggs/cm³ soil) was not affected significantly at any inoculum level compared to controls during September to July, However, suppression of head weights of ''Fielder'' spring wheat grown May-July occurred in microplots initially infested with 0.75 and 9 eggs/cm³ soil. Reproduction (Pf/Pi) was poorer at these two inoculum levels as compared to the lower densities. In another greenhouse experiment, roots of wheat cultivars Fielder, ''Fieldwin,'' ''Gaines,'' ''Hyslop,'' and Nugaines became infected by M. chitwoodi, but not by M. hapla. Reproduction of M. chitwoodi was less on Gaines and Nugaines than on Fielder, Fieldwin, or Hyslop.  相似文献   

10.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

11.
With methods developed in this study, varietal responses to M. javanica were evaluated and heritability of resistance of two promising carrot cultivars was estimated. More egg masses were found on root systems inoculated with eggs added to the soil in three holes in 250 cm³ cups than by mixing the inoculum with soil in the cups. A resistant breeding line, CNPH 1437, was discriminated from susceptible cultivar Nova Kuroda with inoculum levels higher than 2,000 eggs per cup. Greenhouse and field results suggested that cultivars Nantes Superior and Shin Kuroda were susceptible, Kuronan was somewhat tolerant, and Brasilia and Tropical were resistant to M. javanica. Nantes Superior or Shin Kuroda yielded less in carbofuran-treated soil (3 kg a.i./ha) than Kuronan, Brasilia, and Tropical did in nontreated soil. However, incorporation of the nematicide greatly increased yields of Kuronan (32%), Brasilia (62%), and Tropical (91%). Primary root galling at the seedling stage was an adequate parameter for resistance evaluation. Estimated heritability were 0.48 ± 0.07 for primary root galling and 0.35 ± 0.08 for egg mass production in Brasilia, and 0.16 ± 0.11 for primary root galling and 0.31 ± 0.09 for egg mass production in Kuronan.  相似文献   

12.
The relationship between population densities of race 1 of Meloidogyne incognita and yield of eggplant was studied. Microplots were infested with finely chopped nematode-infected pepper roots to give population densities of 0, 0.062, 0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64, and 128 eggs and juveniles/cm³ soil. Both plant growth and yield were suppressed by the nematode. A tolerance limit of 0.054 eggs and juveniles/cm³ soil and a minimum relative yield of 0.05 at four or more eggs and juveniles/cm³ soil were derived by fitting the data with the equation y = m + (1 - m)zP⁻T. Maximum nematode reproduction rate was 12,300. Hatch of eggs from egg masses in water or from sodium hypochlorite dissolved egg masses was similar (41% and 39%), but egg viability was significantly greater from egg masses in water (58%) than from sodium hypochlorite dissolved egg masses (12%) after 4 weeks. Greater numbers of nematodes were collected from roots of tomatoes from soil infested with entire egg masses than from tomato roots from soil infested with egg masses dissolved by sodium hypochlorite.  相似文献   

13.
Microplots 80 × 100 cm, infested with varying initial population densities (Pi) of Meloidogyne incognita or M. hapla, were planted to tomato at two locations. Experiments were conducted in a sandy loam soil at Fletcher, N. C. (mountains) where the mean temperature for May to September is ca 20.7 C, and in a loamy saml at Clayton, N. C. (coastal plain) where the mean temperature for May to Septemher is ca 24.8 C. In these experimentally infested plots, M. incognita and M. hapla caused maximunt yield losses of 20-30%, at lhe mountain site with Pi of 0-12,500 eggs and larvae/500 cm³ of soil. In the coaslal plain, M. incognita suppressed yields up to 85%, and M. hapla suppressed yields up to 50% in comparison with the noninfested control. A part of the high losses at this site apparently was due to M. incognita predisposing tomato to the early blight fungus. In a second experintent, in which a nematicide was used to obtain a range of Pis (with Pi as high as 25,000/50 cm³ of soil) at Fletcher, losses due to M. incognita were as great as 50%, but similar densities of M. hapla suppressed yields by only 10-25%. Approximate threshold densities for both species ranged from 500 to 1,000 larvae and eggs (higher for surviving larvae) for the mountain site, whereas nutnbers as low as 20 larvae/500 cm³ of soil of either species caused signiticant damage in the coastal plain. Chemical soil treatments proved useful in obtaining various initial population densities; however, problems were encountered in measuring effective inoculum after such treatments, especially in the heavier soil.  相似文献   

14.
Microplot experiments were conducted in 1989 and 1990 to determine the relationship between yield of peanut (Arachis hypogaea) and inoculum density ofMeloidogyne arenaria race 1. Nine inoculum densities were used, ranging from 0-200 eggs/100 cm³ soil (1989) or from 0-100 eggs/100 cm³ (1990), and each density was replicated 10 times. In 1989, higher final densities (mean of 1,171 juveniles [J2]/100 cm³ soil) were obtained in plots inoculated with 0.5 to 50 eggs/100 cm³ soil than in plots inoculated with 100 to 200 eggs/100 cm³ (313 J2/100 cm³ soil). In 1990, final densities of M. arenaria reached high levels (≥ 1,111 J2/100 cm³ soil) in all inoculated plots. Pod yield and dry weight of foliage at harvest were negatively correlated (P ≤ 0.05) with inoculum density in both seasons. In 1989, the relationship between pod weight (y) and initial density (x) was described by Seinhorst''s equation, with y = 0.088 + 0.91(0.90)⁽x⁻¹⁾ and r² = 0.826. In 1990, the relationship was y = 0.22 + 0.78(0.97)⁽x⁻¹⁾ and r² = 0.794. These equations suggest tolerance limits of approximately 1 egg/100 cm³ soil, which may require specialized methods, such as bioassay, for detection.  相似文献   

15.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

16.
Second-stage juveniles (I2) of Meloidogyne arenaria consumed more oxygen (P ≤ 0.05) than M. incognita J2, which in turn consumed more than M. javanica J2 (4,820, 4,530, and 3,970 μl per hour per g nematode dryweight, respectively). Decrease in oxygen consumption depended on the nematicide used. Except for aldicarb, there was no differential sensitivity among the three nematode species. Meloidogyne javanica had a greater percentage decrease (P ≤ 0.05) in oxygen uptake when treated with aldicarb, relative to the untreated control, than either M. arenaria or M. incognita. Meloidogyne javanica J2 had a greater degree of recovery from fenamiphos or aldicarb intoxication, after subsequent transfer to water, than did M. incognita. This finding may relate to differential sensitivity among Meloidogyne spp. in the field. Degree of respiratory inhibition and loss of nematode motility for M. javanica after exposure to the nematicides were positively correlated (P ≤ 0.05).  相似文献   

17.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   

18.
Meloidogyne incognita, M. arenaria, M. hapla, and M. javanica were distinguishable from each other by isoelectric focusing (IEF) of nematode egg proteins. Proteins extracted from larvae and adults of Hoplolaimus columbus and from eggs of Heterodera glycines had distinctive profiles, also. Protein profiles from eggs, preparasitic larvae and egg-laying adults of M. incognita showed differences. It was necessary to compare samples run at the same time to ensure reliability.  相似文献   

19.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

20.
Resistance of pepper species (Capsicum annuum, C. baccatum, C. chinense, C. chacoense, and C. frutescens), cultivars and accessions to the root-knot nematodes Meloidogyne incognita race 2 and M. javanica, and their graft compatibility with commercial pepper varieties as rootstocks were evaluated in growth chamber and greenhouse experiments. Most of the plants tested were highly resistant to M. javanica but susceptible to M. incognita. Capsicum annuum AR-96023 and C. frutescens accessions as rootstocks showed moderate and relatively high resistance to M. incognita, respectively. In M. incognita-infested soil in a greenhouse, AR-96023 supported approximately 6-fold less nematode eggs per gram root and produced about 2-fold greater yield compared to a nongrafted commercial variety. The commercial variety grafted on AR-96023 produced a yield as great as the non-grafted variety in the root-knot nematode-free greenhouse. Some resistant varieties and accessions used as rootstocks produced lower yields (P < 0.01) than that of the non-grafted variety in the noninfested greenhouse. Use of rootstocks with nematode-resistance and graft compatibility may be effective for control of root-knot nematodes on susceptible pepper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号