共查询到20条相似文献,搜索用时 15 毫秒
1.
International Journal of Peptide Research and Therapeutics - A correction to this paper has been published: https://doi.org/10.1007/s10989-021-10233-9 相似文献
2.
活性氧簇是细胞有氧代谢过程中产生的一类化学基团。线粒体是活性氧簇的主要生成位点。一般观点认为,在脑缺血-再灌注损伤过程中,活性氧簇发挥神经细胞损伤作用。活性氧簇不仅直接参与神经细胞氧化损伤过程,也可通过外源性途径和内源性途径,引起神经细胞凋亡。然而,除神经细胞损伤作用外,活性氧簇也可发挥神经细胞保护作用。活性氧簇可激活低氧诱导因子、核转录因子κB、PI3K/Akt通路和MAPK通路等,参与神经细胞存活机制,减轻神经细胞损伤。本文对活性氧簇在脑缺血-再灌注损伤中的双重作用进行综述。 相似文献
3.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress. 相似文献
4.
糖尿病是一种常见病、多发病,严重威胁着人类的健康。现已明确,糖尿病是冠心病发病的一个重要因素。心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤是临床常见的病理过程,同时是冠心病发病及心肌血运重建治疗过程中的核心环节,如何减轻I/R损伤一直是国际研究热点之一。糖尿病与I/R损伤对心肌都有损害作用,相关研究证明糖尿病能够进一步恶化I/R损伤对心肌的损伤作用。研究表明,缺血预处理(ischemia preconditioning,IPC)可以延缓或减轻心肌I/R损伤,同时,麻醉药预处理(anesthetic induced preconditioning,APC)也具有IPC样的心肌保护作用。其中,七氟烷作为现阶段临床较常用的吸入麻醉药,同样对心肌I/R损伤具有保护作用。本文就七氟烷对糖尿病心肌I/R损伤的影响及其机制做一综述。 相似文献
5.
急性心肌梗死后的再灌注是挽救缺血心肌的唯一方法,但是血流的恢复可能导致心肌缺血-再灌注损伤. 长链非编码RNA(lncRNA)和焦亡都参与了心肌缺血-再灌注损伤的病理过程并发挥重要作用. lncRNA能直接或者间接作用于焦亡信号通路相关蛋白质,对包括心肌缺血-再灌注损伤在内的多种病理过程进行调控. 本文就lncRNA和焦亡在心肌缺血-再灌注损伤中的作用做一综述,以进一步探索两者关系,为防治心肌缺血-再灌注损伤提供新思路. 相似文献
6.
Cells can undergo two alternative fates following exposure to environmental stress: they either induce apoptosis or inhibit apoptosis and then repair the stress-induced alterations. These processes minimize cell loss and prevent the survival of cells with aberrant DNA and protein alterations. These two alternative fates are partly controlled by stress granules (SGs). While arsenite, hypoxia, and heat shock induce the formation of SGs that inhibit apoptosis, X-ray irradiation and genotoxic drugs do not induce SGs, and they are more prone to trigger apoptosis. However, it is unclear precisely how SGs control apoptosis. This study found that SGs suppress the elevation of reactive oxygen species (ROS), and this suppression is essential for inhibiting ROS-dependent apoptosis. This antioxidant activity of SGs is controlled by two SG components, GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and ubiquitin-specific protease 10 (USP10). G3BP1 elevates the steady-state ROS level by inhibiting the antioxidant activity of USP10. However, following exposure to arsenite, G3BP1 and USP10 induce the formation of SGs, which uncovers the antioxidant activity of USP10. We also found that the antioxidant activity of USP10 requires the protein kinase activity of ataxia telangiectasia mutated (ATM). This work reveals that SGs are critical redox regulators that control cell fate under stress conditions. 相似文献
7.
MicroRNA是一种内源性的小核苷酸片段,已检测出700余种。大约30%的人类基因受miRNAs调节。其中miRNA-214在不同细胞有多种生物学作用,通过调控多种靶基因在诸多疾病中都发挥着重要作用。microRNA-214在心肌损伤及免疫方面也发挥积极的作用,通过抑制心肌缺血/再灌注的细胞凋亡、HIF1AN等机制参与心肌缺血/再灌注,其有可能成为预防和治疗治疗心肌缺血/再灌注损伤性疾病的新型靶向分子,为临床预防和治疗心肌缺血/再灌注损伤性疾病提供思路和方法。 相似文献
8.
摘要 目的:探讨刺槐素对大鼠心肌缺血再灌注损伤(MIRI)的作用以及可能的作用机制。 方法:对24只Sprague-Dawley (SD)大鼠进行随机分组,分为:假手术组、模型组、刺槐素给药组、刺槐素+AG490给药组,每组6只,通过结扎冠状动脉左前降支,缺血30 min,再灌注120 min复制心肌缺血再灌注损伤模型。利用氯化三苯基四氮唑测定心肌梗死面积,紫外分光光度计和酶联免疫法检测血清中肌酸激酶同工酶(CK-MB)、乳酸脱氢酶(LDH)的活性,蛋白印迹法分别检测心肌组织中Bcl-2、Bax、Stat3和p-Stat3蛋白相对表达水平。 结果:与假手术组比较,模型组大鼠血清中CK-MB、LDH活性明显升高(P<0.01),心肌梗死面积百分比显著增加(P<0.01),p-Stat3/Stat3比率、Bcl-2/Bax比率显著下降(P<0.01);与模型组相比,刺槐素给药组中CK-MB、LDH的活性,以及心肌梗死面积百分比显著降低(P<0.01),Bcl-2/Bax比率和p-Stat3/Stat3比率显著提高(P<0.05)。然而在刺槐素+AG490药物组中刺槐素对于受损心肌的保护作用被AG490消除。 结论:刺槐素可减轻MIRI大鼠心肌损伤,发挥心肌保护作用,其机制可能与活化Jak2/Stat3信号通路进而抑制心肌细胞凋亡有关。 相似文献
9.
ObjectiveTongxinluo (TXL) has been shown to decrease myocardial necrosis after ischemia/reperfusion (I/R) by simulating ischemia preconditioning (IPC). However, the core mechanism of TXL remains unclear. This study was designed to investigate the key targets of TXL against I/R injury (IRI) among the cardiac structure-function network. Materials and MethodsTo evaluate the severity of lethal IRI, a mathematical model was established according to the relationship between myocardial no-reflow size and necrosis size. A total of 168 mini-swine were employed in myocardial I/R experiment. IRI severity among different interventions was compared and IPC and CCB groups were identified as the mildest and severest groups, respectively. Principal component analysis was applied to further determine 9 key targets of IPC in cardioprotection. Then, the key targets of TXL in cardioprotection were confirmed. ResultsNecrosis size and no-reflow size fit well with the Sigmoid Emax model. Necrosis reduction space (NRS) positively correlates with I/R injury severity and necrosis size ( R2=0.92, R2=0.57, P<0.01, respectively). Functional and structural indices correlate positively with NRS ( R2=0.64, R2=0.62, P<0.01, respectively). TXL recovers SUR2, iNOS activity, eNOS activity, VE-cadherin, β-catenin, γ-catenin and P-selectin with a trend toward the sham group. Moreover, TXL increases PKA activity and eNOS expression with a trend away from the sham group. Among the above nine indices, eNOS activity, eNOS, VE-cadherin, β-catenin and γ-catenin expression were significantly up-regulated by TXL compared with IPC (P>0.05) or CCB (P<0.05) and these five microvascular barrier-related indices may be the key targets of TXL in minimizing IRI. ConclusionsOur study underlines the lethal IRI as one of the causes of myocardial necrosis. Pretreatment with TXL ameliorates myocardial IRI through promoting cardiac microvascular endothelial barrier function by simulating IPC. 相似文献
10.
To investigate the impacts and related mechanisms of penehyclidine hydrochloride (PHC) on ischemia/reperfusion (I/R)-induced myocardial injury. A rat model of myocardial I/R injury was established by the ligation of left anterior descending coronary artery for 30 min followed by 3 h perfusion. Before I/R, the rats were pretreated with or without PHC. Cardiac function was measured by echocardiography. The activities/levels of myocardial enzymes, oxidants and antioxidant enzymes were detected. Evans blue/TTC double staining was performed to assess infarct size. Cardiomyocyte apoptosis was evaluated by TUNEL assay. The release of inflammatory cytokines and inflammatory mediators was detected by ELISA. Western blot was performed to analyze the expression of COX-2, IκB, p-IκB and NF-κB. Meanwhile, the rats were given a single injection of H-PHC before I/R. The effects of PHC on myocardial infarct and cardiac function were investigated after 7 days post-reperfusion. We found that PHC remarkably improved cardiac function, alleviated myocardial injury by decreasing myocardial enzyme levels and attenuated oxidative stress in a dose-dependent manner. Additionally, PHC preconditioning significantly reduced infarct size and the apoptotic rate of cardiomyocytes. Administration of PHC significantly decreased serum TNF-α, IL-1β, IL-6 and PGE 2 levels and myocardium COX-2 level. Meanwhile, the expression levels of p-IκB and NF-κB were downregulated, while IκB expression was upregulated. H-PHC also exerted long-term cardioprotection in a rat model of I/R injury by decreasing infarct size and improving cardiac function. These results suggest that PHC can efficiently protect the rats against I/R-induced myocardial injury. 相似文献
11.
目的:观察楤木皂苷(total saponins extracted from Aralia taibaiensis,s AT)对大鼠心肌缺血/再灌注(myocardia1 ischemia/reperfusion,MI/R)损伤的影响。方法:可逆性冠脉左前降支结扎缺血30 min再灌注3 h复制MI/R模型,将SD大鼠随机分为假手术组、模型组、s AT低、中、高剂量组,每组10只。采用伊文思蓝(EB)、2,3,5-氯化三苯基四氮唑蓝(TTC)双染法测定心肌梗死面积,苏木精-伊红(HE)染色法观察心肌病理学形态变化,并检测血清中乳酸脱氢酶(LDH)、肌酸激酶同工酶(CK-MB)、超氧化物歧化酶(SOD)、丙二醛(MDA)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GSH-Px)水平。结果:与模型组比较,s AT中、高剂量组可明显缩小心肌梗死面积(P0.05),并显著降低血清中LDH、CK-MB及MDA的含量,同时使得血清中SOD、CAT和GSH-Px的活性增加。且所有给药组心肌组织的病理损伤也小于模型组。结论:s AT对大鼠MI/R损伤具有保护作用,其机制可能与抗氧化作用相关。 相似文献
12.
经皮冠状动脉介入治疗术(percutaneous coronary artery intervention,PCI术)是冠心病患者血运重建的重要手段,但临床观察显示PCI术后经出现慢血流、无复流,再灌注心律失常及心肌酶学的升高,直接影响患者的预后。因此,减少PCI术后的心肌损伤是改善冠心病患者经PCI术后预后的关键。目前研究认为PCI术后心肌缺血再灌注损伤的发病机制主要与心肌再灌注时与氧自由基生成增多、细胞内Ca2+超载、心肌细胞能量代谢障碍、微血管损伤、粒细胞浸润以及心肌细胞的凋亡等多方面的作用有关,而PCI术后心肌损伤的保护治疗方面主要有药物与器械两方面。本文就PCI术后心肌缺血再灌注损伤的机制及保护治疗的研究进展作一综述。 相似文献
13.
Flavonoids are important components of ‘functional foods’, with beneficial effects on cardiovascular function. The present study was designed to investigate whether licochalcone D (LD) could be a cardioprotective agent in ischemia/reperfusion (I/R) injury and to shed light on its possible mechanism. Compared with the I/R group, LD treatment enhanced myocardial function (increased LVDP, d p/d t
max, d p/d t
min, HR and CR) and suppressed cardiac injury (decreased LDH, CK and myocardial infarct size). Moreover, LD treatment reversed the I/R-induced cleavage of caspase-3 and PARP, resulting in a significant decrease in proinflammatory factors and an increase in antioxidant capacity in I/R myocardial tissue. The mechanisms underlying the antiapoptosis, antiinflammation and antioxidant effects were related to the activation of the AKT pathway and to the blockage of the NF-κB/p65 and p38 MAPK pathways in the I/R-injured heart. Additionally, LD treatment markedly activated endothelial nitric oxide synthase (eNOS) and reduced nitric oxide (NO) production. The findings indicated that LD had real cardioprotective potential and provided support for the use of LD in myocardial I/R injury. 相似文献
14.
目的:探讨氧化苦参碱(OMT)对大鼠缺血再灌注心肌损伤(MIRI)的保护机制。方法:随机将60只成年Wistar大鼠分成对照组、MIRI组和OMT组,每组20只,除对照组外,其他两组结扎30 min后松解结扎线灌注60 min。结扎前10 min,OMT组股静脉输入苦参注射液120 mg/kg,对照组、MIRI组则输入等容量生理盐水。造模后,记录两组心率(HR)、左心室收缩压(LVSP)、左室内压最大上升或下降速率(+dp/dt_(max)或-dp/dt_(min))及血清乳酸脱氢酶(LDH),检测两组心肌组织中一氧化氮(NO)、丙二醛(MDA)、一氧化氮合酶(NOS)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)水平。结果:与MIRI组相比,OMT组HR、LVSP和+dp/dt_(max)、-dp/dt_(min)均显著升高(P0.05),且OMT组上述指标与对照组比较,差异均无统计学意义(均P0.05)。与MIRI组相比,OMT组的NO、NOS、SOD、GSH-PX水平均显著升高,而MDA、血清LDH水平显著降低,比较差异均有统计学意义(均P0.05),且OMT组上述指标与对照组比较,差异均无统计学意义(均P0.05)。结论:OMT对MIRI大鼠具有心肌保护作用,其机制可能与提高抗氧自由基活性、改善微循环及舒张冠脉血管有关。 相似文献
15.
Hyperbaric oxygen (HBO) therapy is considered a safe and feasible method that to provide neuroprotection against ischemic stroke. However, the therapy mechanisms of HBO have not been fully elucidated. We hypothesized that the mechanism underlying the protective effect of HBO preconditioning (HBO-PC) against cerebral ischemia/reperfusion injury was related to inhibition of mitochondrial apoptosis and energy metabolism disorder. To test this hypothesis, an ischemic stroke model was established by middle cerebral artery occlusion (MCAO) in rats. HBO-PC involved five consecutive days of pretreatment before MCAO. In additional experiments, X chromosome-linked inhibitor of apoptosis protein (XIAP) and second mitochondria-derived activator of caspases (SMAC) shRNA and NC plasmids were intraventricularly injected into rat brains after MCAO (2 h). After 24 h, all rats underwent motor function evaluation, which was assessed by modified Garcia scores. TTC staining for the cerebral infarct and cerebral edema, and TUNEL staining for cell apoptosis, were also analyzed. Reactive oxygen species and antioxidative enzymes in rat brains were detected, as well as mitochondrial complex enzyme activities, ATP levels, and Na+/K+ ATPase activity. Western blot was used to detect apoptotic proteins including Bcl-2, Bax, caspase-3, caspase-9, cyc-c, XIAP, and SMAC. HBO-PC remarkably reduced the infarct volume and improved neurological deficits. Furthermore, HBO-PC alleviated oxidative stress and regulated the expression of apoptosis-related proteins. Moreover, HBO-PC inhibited the decrease in ATP levels, mitochondrial complex enzyme activities, and Na+/K+ ATPase activity to maintain stable energy metabolism. XIAP knockdown weakened the protective effect of HBO, whereas SMAC knockdown strengthened its protective effect. The effects of HBO-PC can be attributed to inhibition of ischemia/hypoxia-induced mitochondrial apoptosis and energy metabolism disturbance. The action of HBO-PC is related to the XIAP and SMAC signaling pathways. 相似文献
16.
Background and PurposeRetinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury. MethodsUnilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy. ResultsDiosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio. ConclusionsMaintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio. 相似文献
17.
血红素加氧酶-1(Heme Oxygenase-1,HO-1)是催化血红素分解的关键酶。近年来,人们对血红素降解产物的抗氧化、抗炎症等功能的认识推动了对HO酶系的研究。缺血/再灌注损伤(IRI)是一个重要的临床问题,而临床上对IRI的防治尚缺乏有效的方法。目前发现HO-1过表达具有抗IRI的作用,其保护作用的可能机制有:抗氧化作用、调节微循环、调节细胞周期和抗炎症作用。 相似文献
18.
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species. 相似文献
19.
The cellular prion protein (PrP C), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrP C in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrP C knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and N ε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrP C may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways. 相似文献
20.
在脑缺血再灌注损伤中,自由基发挥着重要作用。脑缺血及再灌注可产生大量的自由基,随着这些自由基的聚集,会引发一系列的分子级联反应,从而增加血脑屏障的通透性,诱发脑水肿、出血、炎症反应及细胞死亡。以一氧化氮(NO)及过氧亚硝基阴离子(ONOO-)为代表的活性氮(reactive nitrogen species,RNS),是自由基的重要组成部分,它们在脑缺血再灌注损伤中作用显著。一方面,活性氮能激活基质金属蛋白酶(MMPs),破坏血脑屏障。MMPs作为一大类含2价锌离子的水解酶,其激活可以降解脑血管及神经元细胞外基质。脑缺血再灌注损伤产生NO和ONOO-,它们均可以通过激活MMPs,降解紧密连接蛋白,从而破坏血脑屏障。另一方面,近期研究发现,活性氮也参与了脑缺血后神经再生及修复的调节过程。因此,了解这些活性小分子在血脑屏障破坏及神经再生中的复杂生物活性将很有意义。小窝蛋白1(Caveolin-1)就是活性氮自由基的重要靶分子,它是一种细胞表面的穴样内陷(caveolae)中的膜蛋白,可以通过抑制MMPs的激活保护血脑屏障的完整性。下调Caveolin-1的表达将引起血脑屏障的破坏。脑缺血所产生的NO能下调Caveolin-1的表达,而Caveolin-1的下调,能引起NO合酶的增加,促进生成更多的NO。活性氮与Caveolin-1互相作用,形成了一个反馈回路,通过激活MMPs而造成血脑屏障的不断破坏。此外,Caveolin-1通过调节不同的信号通路,抑制神经干细胞的增长及向神经元分化。因此,活性氮也很可能通过调节Caveolin-1及其他信号通路调控神经再生。在这篇文章中,我们对活性氮在血脑屏障及神经再生中的近期研究进展进行了综述。我们认为,活性氮可能在脑缺血再灌注中起双重作用,既是细胞毒性分子,亦可能是神经再生中的重要信号分子,其作用与其在神经元、内皮细胞及其微环境中产生的量有重要的关系。 相似文献
|