首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistence of dormant Ranger and nondormant Moapa alfalfas, both susceptible to Ditylenchus dipsaci, varied with stand age and cutting frequency. Stand reduction increased with cutting frequency. In D. dipsaci-infested soil, stand reductions in Ranger 1, 4, and 5 years old exceeded reductions in stands 2 and 3 years old; persistence was greatest in 2-year-old stands. In Moapa alfalfa, D. dipsaci reduced stands the most in years 2 and 3; whereas persistence was greatest in 1-year-old stands. Harvesting Ranger alfalfa one, two, three, and four times during the growing season reduced 2-year-old stands by 10, 14, 19, and 29% in D. dipsaci-infested soil and by 2, 4, 4, and 7% in uninfested soil, respectively. Comparable reductions in Moapa alfalfa were 13, 16, 18, and 38% in infested soil and 0, 2, 4, and 6% in uninfested soil. Cutting frequency had less effect on persistence of resistant semidormant Lahontan grown in D. dipsaci-infested soil relative to susceptible cultivars. Increasing the number of cuttings per year decreased storage of total nonstructural carbohydrate and adversely affected persistence of alfalfa stands and yields; the greatest negative effects occurred on both resistant and susceptible alfalfa in D. dipsaci-infested soil.  相似文献   

2.
Verticillium albo-atrum wilt symptoms appeared faster and were significantly more severe in the presence of Ditylenchus dipsaci in Vernal, a wilt-susceptible cultivar, than in Marls Kabul, a wilt-resistant cultivar. Winter kill in the field was not affected by the nematode during the first winter, but 50% of plants were killed in the second winter. Forage yield from nematode-infected plants was significantly reduced the second year. Interaction with V. albo-atrum did not significantly reduce forage yields below that of D. dipsaci alone. Pratylenchus penetrans did not increase the severity of wilt symptoms in the presence of V. albo-atrum, nor did it affect forage yield in the greenhouse. It did, however, reduce alfalfa yields in presence of V. albo-atrum under field conditions. D. dipsaci and P. penetrans reproduced faster in Vernal than in Maris Kabul when the fungus was present.  相似文献   

3.
Since Spartina alterniflora was introduced into the Chongming Dongtan Nature Reserve in 1995, there has been rapid expansion of this species, seriously threatening the overall biodiversity. During 2005 and 2006, a field experiment to examine physical controls on S. alterniflora, including digging and tillage, breaking of rhizomes, mowing and biological substitution with Phragmites australis, was conducted to find a means of controlling this invasive plant. The growth parameters of plant density, coverage and above-ground biomass were used to evaluate the efficiency of different treatments. The results showed that for all treatments, the plant density, coverage and above-ground biomass were significantly lower than those of the control in the first growing season. However, in the second season, the differences between the treatment and the control were not significant and there were no significant differences by the end of the second growing season. The breaking of rhizomes treatment inhibited the growth of S. alterniflora significantly in the first growing season and inhibition increased with the depth of the treatment. However, the inhibition of growth disappeared after two growing seasons and there were no significant differences among the treatments and the control. The mowing treatment significantly inhibited the growth of S. alterniflora in the first growing season. By the end of the second growing season, the growth of S. alterniflora had recovered to some extent, and only the treatments of JUN, JUL, AUG and SEP significantly inhibited its growth. The treatment of AUG might be the most suitable time for controlling via mowing. In the biological substitution treatment, the transplanted P. australis survived quite well over both growing seasons and both the plant height and fruiting percent increased considerably in the second growing season. A realistic strategy for controlling and managing the invasion of S. alterniflora in the nature reserve should involve integrating all four control measures on the basis of their intensity, frequency, timing and area. Further work on longer-term field experiments is required in order to test these conclusions further and provide useful information for the wetland management of the nature reserve.  相似文献   

4.
Ditylenchus dipsaci-infected and noninfected alfalfa plants in a naturally infested field were studied from July 1980 to September 1982. Forty-one percent of the plants died during the study. Ninety-seven percent of the plants that died were infected with D. dipsaci. Sixty-nine percent of the observed mortality occurred during winter. Forage yield of infected plants was significantly lower than yield of noninfected plants at each harvest. Stored carbohydrates in infected plants were significantly lower than in noninfected plants. In a controlled environment test, significantly greater mortality occurred in frozen severely infected plants than in frozen noninfected plants, while no mortality occurred in severely infected or noninfected plants that were not frozen. Both forage yield and stored carbohydrates were significantly lower in severely infected than noninfected, non-frozen plants. Mortality in greenhouse-grown plants that were transplanted to field plots was significantly greater in D. dipsaci-infected plants than in noninfected plants after one winter.  相似文献   

5.
Aerial images were obtained on 22 July 1999 and 4 August 2000 from five cotton sites infested with Meloidogyne incognita. Images contained three broad bands representing the green (500-600 nm), red (600-700 nm), and near-infrared (700-900 nm) spectrum. Soil samples were collected and assayed for nematodes in the fall at these sites. Sampling locations were identified from images, by locating the coordinates of a wide range of light intensity (measured as a digital number) for each single band, and combinations of bands. There was no single band or band combination in which reflectance consistently predicted M. incognita density. In all 10 site-year combinations, the minimum number of samples necessary to estimate M. incognita density within 25% of the population mean was greater when sampling by reflectance-based classes (3 to 4 per site) than sampling based on the entire site as one unit. Two sites were sampled at multiple times during the growing season. At these sites, there was no single time during the growing season optimal to take images for nematode sampling. Aerial infrared photography conducted during the growing season could not be used to accurately determine fall population densities of M. incognita.  相似文献   

6.
Recent molecular studies have shown that four genetic lineages, probably cryptic species, cause oak powdery mildew in Europe. We tested the hypothesis of niche differentiation between the two most frequent species (Erysiphe alphitoides and Erysiphe quercicola), by determining their relative prevalences at various times during the growing season. E. quercicola was strictly associated with the flag-shoot symptom in a 2-yr sampling campaign of 35 natural oak seedling populations. Additional sampling during Aug.–Sep. in the same stands showed that E. alphitoides predominated in most (70 %) cases. Time-course monitoring of powdery mildew in two natural regenerating oak populations confirmed the inverse patterns of relative abundance for these two species in early and late season. The coexistence of these two closely related species may be due to the use of different strategies, resulting from a trade-off between overwintering (flag-shoots vs. chasmothecia) and late-season performance.  相似文献   

7.
White flagging of alfalfa, Medicago sativa ''Ranger, found associated with Ditylenchus dipsaci in the Columbia River Basin was observed in northern Utah during 1971. This is a report on chloroplast changes, induced by D. dipsaci in alfalfa leaves, as observed with an electron microscope. Leaves from alfalfa plants infected with D. dipsaci were either devoid of normal pigmentation or displayed various shades of yellow-green. Cells of leaf tissue from noninfected plants exhibited normal chloroplast structure. By contrast, the chloroplast structure in cells of leaf tissue from infected plants showed progressive degradation as normal pigmentation decreased.  相似文献   

8.
After 18 months of storage at -150 C, some larvae of Ditylenchus dipsaci, which had been treated in a 7.5% solution of dimethyl sulphoxide and cooled to -25 C before storage, were still viable on thawing. Some survivors penetrated and developed normally in stems of alfalfa seedlings. Tests showed that active larvae could be frozen directly, thus eliminating the need to use the quiescent stage of this nematode previously thought necessary for successful storage at cryogenic temperatures. The method described is suitable for long-term storage of D. dipsaci and may, with slight modifications, be used to preserve other plant-parasitic nematodes.  相似文献   

9.
Heterodera schachtii significantly (P = 0.05) reduced sugarbeet root growth below that of uninoculated controls at 20, 24, and 28 C, and Ditylenchus dipsaci significantly (P = 0.05) reduced root growth below that of uninoculated controls at 16, 20, 24, and 28 C. A combination of H. schachtii and D. dipsaci significantly (P = 0.05) reduced root growth below that of single inoculations of H. schachtii at all temperatures and D. dipsaci at 20, 24, and 28 C. Single inoculations of H. schachtii and D. dipsaci significantly (P = 0.05) reduced top growth of sugarbeet below that of uninoculated controls at 20, 24, and 28 C, and 16, 20, 24, and 28 C, respectively. A combination of the two nematodes significantly (P = 0.05) reduced top growth below that of single inoculations of H. schachtii at all temperatures. However, a combination of the two nematodes failed to significantly (P = 0.05) reduce top growth below that of single inoculations of D. dipsaci at any temperature. Inoculations of either H. schachtii or D. dipsaci did not affect penetration of the other nematode, and D. dipsaci did not affect development and reproduction of H. schachtii. D. dipsaci did not reproduce on sugarbeet.  相似文献   

10.
In 1999 and 2000, yellow sticky cards and sweep net samples were used to document the occurrence of an overwintering adult generation of Chaetocnema pulicaria Melsheimer, corn flea beetle, followed by two distinct populations peaks during the growing season in Iowa Emergence of the overwintering adult generation started in mid-April and continued until early June in both years, with populations as high as 45 +/- 7.9 per 10 sweeps. Periods that ranged from 14 to 32 d were observed in 1999 and 2000 when C. pulicaria was not found following the overwintering generation. The first summer peak of C pulicaria was observed between the end of June into the middle of July, with the highest observed peak at 16.70 +/- 1.42 C. pulicaria per 10 sweeps in cornfields. The second summer peak of C pulicaria was observed between the middle into early September, with populations as high as 27.80 +/- 2.76 C. pulicaria per 10 sweeps. During the growing season, more C. pulicaria were caught on yellow sticky cards originating from soybean borders than from grass borders. There were significantly greater numbers of C. pulicaria on yellow sticky cards located in grass borders adjacent to cornfields at the end of the growing season, compared with yellow sticky cards located within cornfields, indicating the movement of C. pulicaria from the cornfield back into the grass borders at the end of the growing season. In 2000, from August to the end of the corn growing season, significantly more C. pulicaria were found in grass borders than in the cornfields. Based on this new quantitative information, planting time could be altered to avoid the emergence of the overwintering generation of C. pulicaria. In addition, knowledge concerning the seasonalities of the first and second population peaks of C pulicaria during the corn growing season could be used to recommend optimal timing for foliar-applied insecticide applications. This new knowledge concerning the seasonal dynamics of C pulicaria will help to improve management recommendations for Stewart's disease of corn, caused by the bacterium Pantoea stewartii, and that is vectored by C pulicaria.  相似文献   

11.
Patterns of snow cover across the Arctic are expected to change as a result of shrub encroachment and climate change. As snow cover impacts both the subnivean environment and the date of spring melt, these changes could impact Arctic food webs by altering the phenology and survival of overwintering arthropods, such as spiders (Araneae). In this field study, we used snow fences to increase snow cover across a series of large (375 m2) heath tundra plots and examined the effects on the local spider community during the following growing season. Fences increased snow cover and delayed melt on the treatment plots, paralleling the conditions of nearby shrub sites. Frequent sampling over the season revealed that increased snow cover did not affect spider abundance across different genera nor did it affect overall community composition. Further, our snow treatment did not affect the dates when plots achieved seasonal catch milestones (25, 50, 75 % of total seasonal catch). Increased winter snow cover did, however, produce higher body masses in adults and juveniles of the dominant species Pardosa lapponica (Lycosidae), beginning immediately after snow melt until midway through the growing season. In addition, ovary/oocyte mass of mature P. lapponica females was significantly higher on treatment plots during the peak reproductive period. This is the first experimental manipulation study to report a significant effect of landscape-level changes to winter snow cover on the biomass of an Arctic macroarthropod.  相似文献   

12.
Population dynamics of A. ritzemabosi and D. dipsaci were studied in two alfalfa fields in Wyoming. Symptomatic stem-bud tissue and root-zone soil from alfalfa plants exhibiting symptoms of D. dipsaci infection were collected at intervals of 3 to 4 weeks. Both nematodes were extracted from stem tissue with the Baermann funnel method and from soil with the sieving and Baermann funnel method. Soil moisture and soil temperature at 5 cm accounted for 64.8% and 61.0%, respectively, of the variability in numbers of both nematodes in soil at the Big Horn field. Also at the Big Horn field, A. ritzemabosi was found in soil on only three of the 14 collection dates, whereas D. dipsaci was found in soil on 12 dates. Aphelenchoides ritzemabosi was found in stem tissue samples on 9 of the 14 sampling dates whereas D. dipsaci was found on all dates. Populations of both nematodes in stem tissue peaked in October, and soil populations of both peaked in January, when soil moisture was greatest. Numbers of D. dipsaci in stem tissue were related to mean air temperature 3 weeks prior to tissue collection, while none of the climatic factors measured were associated with numbers of A. ritzemabosi. At the Dayton field, soil moisture plus soil temperature at 5 cm accounted for 98.2% and 91.4% of the variability in the soil populations of A. ritzemabosi and D. dipsaci, respectively. Aphelenchoides ritzemabosi was extracted from soil at two of the five collection dates, compared to extraction of D. dipsaci at three dates. Aphelenchoides ritzemabosi was collected from stem tissue at six of the seven sampling dates while D. dipsaci was found at all sampling dates. The only environmental factor that was associated with an increase in the numbers of both nematodes in alfalfa stem tissue was total precipitation 1 week prior to sampling, and this occurred only at the Dayton field. Numbers of A. ritzemabosi in stem tissue appeared to be not affected by any of the environmental factors studied, while numbers of D. dipsaci in stem tissue were associated with cumulative monthly precipitation, snow cover at time of sampling, and the mean weekly temperature 3 weeks prior to sampling. Harvesting alfalfa reduced the numbers of A. ritzemabosi at the Big Horn field and both nematodes at the Dayton field.  相似文献   

13.
Dryopteris crassirhizoma is a rhizomatous semi-evergreen fern growing in the understory of deciduous forests. Although the top portion of the overwintering leaves began to wither in early winter, intensive senescence occurred in the spring, concurrently with new leaf development. Dry weight comparisons between organs revealed that the rhizome occupied the largest proportion of the total mass, followed by the pinnae. To assess the storage ability of overwintering leaves and the rhizome, seasonal changes in nitrogen content and the dry mass of pinnae and the rhizome were measured. Nitrogen (36.6%) was resorbed from winter-withering pinnae, but not from spring-withering pinnae. In contrast, a similar decrease in dry mass per unit area occurred between winter- and spring-withering pinnae (15%). These results indicate that overwintering leaves serve as a carbohydrate storage organ, but do not serve as a nitrogen storage organ. Nitrogen was not translocated from the rhizome during the early growing season, but translocation did occur in late summer and autumn. The dry mass of the rhizome decreased by 18.4% in spring, at the time of new leaf expansion. The amount of exported dry matter from the rhizome was threefold larger than that from senescent pinnae. Therefore, the rhizome is a major carbohydrate storage organ in this species, although overwintering leaves also act as a carbohydrate storage organ.  相似文献   

14.
Cut flower producers currently have limited options for nematode control. Four field trials were conducted in 2006 and 2007 to evaluate Midas® (iodomethane:chloropicrin 50:50) for control of root-knot nematodes (Meloidogyne arenaria) on Celosia argentea var. cristata in a commercial floriculture production field in southeastern Florida. Midas (224 kg/ha) was compared to methyl bromide:chloropicrin (98:2, 224 kg/ha), and an untreated control. Treatments were evaluated for effects on Meloidogyne arenaria J2 and free-living nematodes in soil through each season, and roots at the end of each season. Plant growth and root disease were also assessed. Population levels of nematodes isolated from soil were highly variable in all trials early in the season, and generally rebounded by harvest, sometimes to higher levels in fumigant treatments than in the untreated control. Although population levels of nematodes in soil were not significantly reduced during the growing season, nematodes in roots and galling at the end of the season were consistently reduced with both methyl bromide and Midas compared to the untreated control. Symptoms of phytotoxicity were observed in Midas treatments during the first year and were attributed to Fe toxicity. Fertilization was adjusted during the second year to investigate potential fumigant/fertilizer interactions. Interactions occurred at the end of the fourth trial between methyl bromide and fertilizers with respect to root-knot nematode J2 isolated from roots and galling. Fewer J2 were isolated from roots treated with a higher level of Fe (3.05%) in the form of Fe sucrate, and galling was reduced in methyl bromide treated plots treated with this fertilizer compared to Fe EDTA. Reduced galling was also seen with Midas in Fe sucrate fertilized plots compared to Fe EDTA. This research demonstrates the difficulty of reducing high root-knot nematode population levels in soil in subtropical conditions in production fields that have been repeatedly fumigated. Although soil population density may remain stable, root population density and disease can be reduced.  相似文献   

15.
Gaius R. Shaver 《Oecologia》1983,56(2-3):160-165
The effects of fertilization on leaf longevity and leaf mortality in the Alaskan evergreen shrub, Ledum palustre (Ait.) Hult., were investigated in a field experiment. The fertilization treatments included N alone, P alone, N plus P, and N plus P plus K. After 5 years all treatments had the same effect on leaf longevity, decreasing life expectancy from about 2 years in controls to 1–1.5 years in the fertilized plants. In the NPK-fertilized plants, most of the decrease in leaf longevity was due to increased winter leaf mortality; fertilization actually decreased leaf losses during the growing season. The results are consistent with previous research suggesting that one function of overwintering evergreen leaves is to serve as nutrient storage organs, a function that is superfluous when nutrient supplies for new growth can be obtained from current uptake.  相似文献   

16.
Endoparasitic nematode populations are usually measured separately for soil and roots without a determination of the quantitative relation between soil and root population components. In this study, Pratylenchus penetrans populations in peppermint soil, roots, and rhizomes were expressed as the density within a standardized core consisting of 500 g dry soil plus the roots and rhizomes contained therein. Populations of Paratylenchus sp. and Criconemella xenoplax in 500 g dry soil were also determined, thus measuring the total plant-parasitic nematode population associated with the plant. Mean wet root weight per standard core peaked in spring and again in late summer and was lowest early in the growing season and in early fall. Pratylenchus penetrans populations peaked 4 to 6 weeks after root weight peaks. The percentage of the total population in roots reached 70% to 90% in early April, decreased to 20% to 40% in August, and returned to higher percentages during the winter. Rhizomes never contained more than a minor proportion of the population. Mean Paratylenchus sp. populations increased through spring and peaked in late August. Mean C. xenoplax populations fluctuated, peaking in August or September. Populations of all parasitic species were lowest during winter. Evaluation using the standard core method permits assessment of the total P. penetrans population associated with the plant and of changes in root weight as well as the seasonal distribution of P. penetrans.  相似文献   

17.
Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009–2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer.  相似文献   

18.
Demographic attributes of the adults of an introduced herbivorous lady beetleEpilachna niponica (Coleoptera: Coccinellidae) were investigated from 1975 to 1981 in the Botanical Garden of Kyoto University. Population growth rate varied from 4.8 to 16.8 throughout the study period. Fecundity and mortality in the late larval period contributed most to annual changes in the population growth rate. Population growth rate was negatively correlated with the density of overwintering adults. Adult survival from emergence to the reproductive season, which varied from 0.03 to 0.36 throughout the study, was almost completely determined by survival during the pre-hibernation period. Adult survival to the preproductive season changed in a size- and sex-dependent manner. Larger adults survived better than smaller individuals; male-biased mortality occurred from adult emergence to the reproductive age. Severe intraspecific competition among late instar larvae due to host plant defoliation produced a higher proportion of small-sized adults, resulting in lower adult survival to hibernation. The introduced population had a higher population growth rate and a lower adult survival to the reproductive season than the source population.  相似文献   

19.
The reniform nematode, Rotylenchulus reniformis, is the most damaging nematode pathogen of cotton in Alabama. Soil texture is currently being explored as a basis for the development of economic thresholds and management zones within a field. Trials to determine the reproductive potential of R. reniformis as influenced by soil type were conducted in microplot and greenhouse settings during 2008 to 2010. Population density of R. reniformis was significantly influenced by soil texture and exhibited a general decrease with increasing median soil particle size (MSPS). As the MSPS of a soil increased from 0.04 mm in clay soil to > 0.30 mm in very fine sandy loam and sandy loam soils, R. reniformis numbers decreased. The R. reniformis population densities on all soil types were also greater with irrigation. Early season cotton development was significantly affected by increasing R. reniformis Pi, with plant shoot-weight-to-root-weight ratios increasing at low R. reniformis Pi and declining with increasing R. reniformis Pi. Plant height was increased by irrigation throughout the growing season. The results suggests that R. reniformis will reach higher population densities in soils with smaller MSPS; however, the reduction in yield or plant growth very well may be no greater than in a soil that is less preferential to the nematode.  相似文献   

20.
Treatment of daffodil (Narcissus pseudonarcissus) bulbs in a 0.37% formaldehyde water solution at 44 C for 240 minutes is a standard practice in California for management of the stem and bulb nematode, Ditylenchus dipsaci. Recent concern over the safety of formaldehyde and growers'' requests for a shorter treatment time prompted a reevaluation of the procedure. The time (Y, in minutes) required to raise the temperature at the bulb center from 25 to 44 C was related to bulb circumference (X, in cm) and is described by the linear regression Y = -15 + 3.4X. The time required for 100% mortality of D. dipsaci in vitro without formaldehyde was 150, 60, and 15 minutes at 44, 46, and 48 C, respectively. Hot water treatment (HWT) with 0.37% formaldehyde at 44 C for 150 minutes controlled D. dipsaci and did not have a detrimental effect on plant growth and flower production. Shorter formaldehyde-HWT of 90, 45, and 30 minutes at 46, 48, and 50 C, respectively, controlled D. dipsaci but suppressed plant growth and flower production. Fungal genera commonly isolated from the bulbs in association with D. dipsaci were Penicillium sp., Fusarium oxysporum f. sp. narcissi, and Mucor plumbeus, representing 60, 25, and 5%, respectively, of the total fungi isolated. These fungi caused severe necrosis in daffodil bulbs. HWT at 44 C for 240 minutes reduced the number of colonies recovered from bulbs. The effects of formaldehyde, glutaraldehyde, and sodium hypochlorite in reducing the population of fungi within bulbs were variable. Satisfactory control of D. dipsaci within bulbs can be achieved with HWT of bulbs at 44 C for 150 minutes with 0.37% formaldehyde or at 44 C for 240 minutes without chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号