首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine tumor cell DnaJ-like protein 1 or MTJ1/ERdj1 is a membrane J-domain protein enriched in microsomal and nuclear fractions. We previously showed that its lumenal J-domain stimulates the ATPase activity of the molecular chaperone BiP/GRP78 (Chevalier, M., Rhee, H., Elguindi, E. C., and Blond, S. Y. (2000) J. Biol. Chem. 275, 19620-19627). MTJ1/ERdj1 also contains a large carboxyl-terminal cytosolic extension composed of two tryptophan-mediated repeats or SANT domains for which the function(s) is unknown. Here we describe the cloning of the human homologue HTJ1 and its interaction with alpha(1)-antichymotrypsin (ACT), a member of the serine proteinase inhibitor (serpin) family. The interaction was initially identified in a two-hybrid screening and further confirmed in vitro by dot blots, native electrophoresis, and fluorescence studies. The second SANT domain of HTJ1 (SANT2) was found to be sufficient for binding to ACT, both in yeast and in vitro. Single tryptophan-alanine substitutions at two strictly conserved residues significantly (Trp-497) or totally (Trp-520) abolished the interaction with ACT. SANT2 binds to human ACT with an intrinsic affinity equal to 0.5 nm. Preincubation of ACT with nearly stoichiometric concentrations of SANT2 wild-type but not SANT2: W520A results in an apparent loss of ACT inhibitory activity toward chymotrypsin. Kinetic analysis indicates that the formation of the covalent inhibitory complex ACT-chymotrypsin is significantly delayed in the presence of SANT2 with no change on the catalytic efficiency of the enzyme. This work demonstrates for the first time that the SANT2 domain of MTJ1/HTJ1/ERdj1 mediates stable and high affinity protein-protein interactions.  相似文献   

2.
Nucleation of alpha 1-antichymotrypsin polymerization   总被引:3,自引:0,他引:3  
Alpha(1)-antichymotrypsin is an acute phase plasma protein and a member of the serpin superfamily. We show here that wildtype alpha(1)-antichymotrypsin forms polymers between the reactive center loop of one molecule and the beta-sheet A of a second at a rate that is dependent on protein concentration and the temperature of the reaction. The rate of polymerization was accelerated by seeding with polymers of alpha(1)-antichymotrypsin and a complex of alpha(1)-antichymotrypsin with an exogenous reactive loop peptide but not with reactive loop cleaved alpha(1)-antichymotrypsin or with polymers of other members of the serpin superfamily. Sonication of alpha(1)-antichymotrypsin polymers markedly increased the efficacy of seeding such that polymers were able to form under physiological conditions. Taken together, these data provide the first demonstration that serpin polymerization can result from seeding. This mechanism is analogous to the fibrillization of the Abeta(1-42) peptide and may be important in the deposition of alpha(1)-antichymotrypsin in the plaques of Alzheimer's disease.  相似文献   

3.
Forsyth S  Horvath A  Coughlin P 《Genomics》2003,81(3):336-345
The major human plasma protease inhibitors, alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, are each encoded by a single gene, whereas in the mouse they are represented by clusters of 5 and 14 genes, respectively. Although there is a high degree of overall sequence similarity within these groupings, the reactive-center loop (RCL) domain, which determines target protease specificity, is markedly divergent. The literature dealing with members of these mouse serine protease inhibitor (serpin) clusters has been complicated by inconsistent nomenclature. Furthermore, some investigators, unaware of the complexity of the family, have failed to distinguish between closely related genes when measuring expression levels or functional activity. We have reviewed the literature dealing with the mouse equivalents of human alpha(1)-antitrypsin and alpha(1)-antichymotrypsin and made use of the recently completed mouse genome sequence to propose a systematic nomenclature. We have also examined the extended mouse clade "a" serpin cluster at chromosome 12F1 and compared it with the syntenic region at human chromosome 14q32. In summarizing the literature and suggesting a standardized nomenclature, we aim to provide a logical structure on which future research may be based.  相似文献   

4.
Formation of the covalently stabilized alpha 1-antitrypsin (alpha 1-AT)-neutrophil elastase complex, the archetype of serpin-enzyme complexes, results in a structurally rearranged alpha 1-AT molecule that possesses chemo-attractant activities, mediates an increase in synthesis of alpha 1-AT by mononuclear phagocytes and hepatocytes, and is more rapidly cleared from the circulation than is the native alpha 1-AT molecule. We have recently identified an abundant, high affinity cell surface receptor on human hepatoma HepG2 cells and human monocytes that binds alpha 1-AT-elastase complexes, mediates endocytosis and lysosomal degradation of alpha 1-AT-elastase complexes, and induces an increase in synthesis of alpha 1-AT. We have referred to this receptor as the serpin-enzyme complex, or SEC, receptor because it also recognizes complexes of serpins antithrombin III, alpha 1-antichymotrypsin, and C1 inhibitor with their cognate enzymes. In the current study, we show that a pentapeptide domain in the carboxyl terminal fragment of alpha 1-AT (amino acids 370-374, FVFLM) is sufficient for binding to the SEC receptor. A synthetic analog of this pentapeptide (peptide 105C, FVYLI) blocks binding and internalization of alpha 1-AT-125I-trypsin complexes by HepG2 cells. 125I-Peptide 105C binds specifically and saturably to HepG2 cells, and its binding is blocked by alpha 1-AT-trypsin or alpha 1-AT-elastase complexes. Alterations of this sequence introduced into synthetic peptides (mutations, deletions, or scrambling) demonstrate that binding of the pentapeptide domain is sequence-specific. Comparisons with the sequences of other serpins in the corresponding region indicate that this pentapeptide neodomain is highly conserved.  相似文献   

5.
Interaction of plasminogen K 1-3 and K 4 fragments containing lysine binding sites with fibrinogen and its fragments has been investigated. It has been established that K 1-3 fragment binds to fibrinogen and its E and DL fragments. K 4 fragment does not bind to E and DL fragments, but it interacts with fibrinogen. K 4 fragment does not interact with early fibrinogen proteolysis X2 fragment which differs from the native molecule of fibrinogen in the alpha C domain absence. The results obtained indicate that lysine binding sites located at plasminogen K 1-3 and K 4 fragments correspond to different fibrinogen molecule centres. The centre complementary to K 4 fragment lysine binding sites could be located at the fibrinogen alpha C domain.  相似文献   

6.
Human neutrophils use the H2O2-myeloperoxidase-chloride system to generate chlorinated oxidants capable of activating metalloproteinase zymogens that hydrolyze not only native and denatured collagens, but also the serine proteinase inhibitor (serpin) alpha 1-proteinase inhibitor (alpha 1 PI). To identify the metalloenzyme that hydrolyzes and inactivates alpha 1 PI, neutrophil releasates were chromatographed over gelatin-Sepharose and divided into fractions containing either progelatinase or procollagenase. The gelatinase-containing fraction cleaved alpha 1 PI in a manner inhibitable by native type V, but not type I, collagen. Conversely, while the collagenase-containing fraction also cleaved alpha 1 PI, this activity was inhibited by type I, but not type V, collagen. Because type I and V collagens are competitive substrates for collagenase and gelatinase, respectively, each of the metalloproteinase zymogens were purified to apparent homogeneity and examined for alpha 1 PI-hydrolytic activities. Both purified gelatinase and collagenase inactivated alpha 1PI by hydrolyzing the serpin within its active-site loop at the Phe352-Leu353 and Pro357-Met358 bonds, albeit with distinct kinetic properties. Furthermore, purified collagenase, but not gelatinase, cleaved a second serpin, alpha 1-antichymotrypsin, by hydrolyzing the Ala362-Leu363 bond within its active-site loop. These data demonstrate that human neutrophils use chlorinated oxidants to activate collagenolytic metalloproteinases whose substrate specificities can be extended to members of the serpin superfamily.  相似文献   

7.
Cathepsin G has both trypsin- and chymotrypsin-like activity, but studies on its enzymatic properties have been limited by a lack of sensitive synthetic substrates. Cathepsin G activity is physiologically controlled by the fast acting serpin inhibitors alpha1-antichymotrypsin and alpha1-proteinase inhibitor, in which the reactive site loops are cleaved during interaction with their target enzymes. We therefore synthesized a series of intramolecularly quenched fluorogenic peptides based on the sequence of various serpin loops. Those peptides were assayed as substrates for cathepsin G and other chymotrypsin-like enzymes including chymotrypsin and chymase. Peptide substrates derived from the alpha1-antichymotrypsin loop were the most sensitive for cathepsin G with kcat/Km values of 5-20 mM-1 s-1. Substitutions were introduced at positions P1 and P2 in alpha1-antichymotrypsin-derived substrates to tentatively improve their sensitivity. Replacement of Leu-Leu in ortho-aminobenzoyl (Abz)-Thr-Leu-Leu-Ser-Ala-Leu-Gln-N-(2, 4-dinitrophenyl)ethylenediamine (EDDnp) by Pro-Phe in Abz-Thr-Pro-Phe-Ser-Ala-Leu-Gln-EDDnp produced the most sensitive substrate of cathepsin G ever reported. It was cleaved with a specificity constant kcat/Km of 150 mM-1 s-1. Analysis by molecular modeling of a peptide substrate bound into the cathepsin G active site revealed that, in addition to the protease S1 subsite, subsites S1' and S2' significantly contribute to the definition of the substrate specificity of cathepsin G.  相似文献   

8.
Incubation of human serum alpha 1-antichymotrypsin with human pancreatic elastase 2 or porcine pancreatic elastase results in the complete inhibition of each enzyme as determined by spectrophotometric assays. alpha 1-Antichymotrypsin reacts much more rapidly with the human than with the porcine enzyme. The inhibitor: enzyme molar ratio, required to obtain full inhibition of enzymatic activity, is equal to 1.25/1 when alpha 1-antichymotrypsin reacts with human pancreatic elastase 2 while it is markedly higher with porcine pancreatic elastase (5.5/1). Patterns obtained by SDS/polyacrylamide gel electrophoresis of the reaction products show the formation with both enzymes of an equimolar complex (Mr near 77 000) and the release of a fragment migrating as a peptide of Mr near 5000. Moreover a free proteolytically modified form of alpha 1-antichymotrypsin, electrophoretically identical with that obtained in the reaction with cathepsin G or bovine chymotrypsin, is produced in the reaction with each elastase but in a much greater amount when alpha 1-antichymotrypsin reacts with porcine elastase than with human elastase. As a consequence of our findings, the specificity of alpha 1-antichymotrypsin, so far limited to the inhibition of chymotrypsin-like enzymes from pancreas and leukocyte origin, has to be extended to the two pancreatic elastases investigated in this work. A contribution of alpha 1-antichymotrypsin to the regulatory balance between plasma inhibitors and human pancreatic elastase 2 in pancreatic diseases is suggested.  相似文献   

9.
Structure and expression of the gene coding for the human serpin hLS2   总被引:3,自引:0,他引:3  
We have analyzed genomic clones encoding human leuserpin 2 (hLS2). The gene covers about 14.5 kilobases and consists of 5 exons and 4 introns. The genes coding for hLS2, alpha 1-antitrypsin, alpha 1-antichymotrypsin, and rat angiotensinogen share an equivalent exon-intron structure and therefore constitute a distinct subgroup within the serpin gene family, which otherwise displays a highly variable exon-intron pattern. With the exception of a segment in the second exon, the sequence similarity of the genes coding for hLS2 and alpha 1-antitrypsin extends to all exons including one encoding the 5'-untranslated sequences. The implications of these findings with respect to the genesis of the amino-terminal heterogeneity in the serpin family are discussed.  相似文献   

10.
11.
12.
alpha 1-Antichymotrypsin mRNA was isolated by specific polysome immunoprecipitation from turpentine-treated baboon liver. The highly enriched mRNA was used for synthesis and cloning of the corresponding cDNA. Baboon alpha 1-antichymotrypsin cDNA clones were identified by hybrid-selected translation, and the insert DNA fragment from one of the putative clones was used as a probe to screen a human liver cDNA library comprised of 40 000 independent transformants. One of the human cDNA clones was unambiguously identified to contain alpha 1-antichymotrypsin DNA sequences by comparison of its 5'-terminal nucleotide sequence with the N-terminal amino acid sequence of the protein. This cDNA clone, designated phACT235, contains 1524 base pairs of human DNA, which was sequenced in its entirety. The inserted DNA codes for a 25 amino acid signal peptide sequence and the entire mature alpha 1-antichymotrypsin of 408 amino acid residues. Comparison of the amino acid sequence of alpha 1-antichymotrypsin with that of the human alpha 1-antitrypsin has revealed a homology level similar to that between chymotrypsin and trypsin.  相似文献   

13.
14.
Membrane-associated guanylate kinase-interacting protein (MAGUIN)-1 was identified as a protein interacting with synaptic scaffolding molecule (S-SCAM) and postsynaptic density (PSD)-95/synapse-associated protein (SAP)90. MAGUIN-1 has a chimerical molecular structure composed of one sterile alpha motif, one PSD-95/Dlg-A/ZO-1 (PDZ), and one pleckstrin homology (PH) domain, and interacts with the PDZ domains of S-SCAM and PSD-95/SAP90 via its carboxyl-terminal PDZ-binding motif. MAGUIN-1 is considered as a mammalian homologue of Drosophila CNK, which is a Raf-interacting protein implicated in the regulation of eye development. Here we have tested whether MAGUIN-1 interacts directly with Raf-1. MAGUIN-1 and Raf-1 were coimmunoprecipitated from rat brain. MAGUIN-1 binds to the kinase domain of Raf-1, and Raf-1 binds to the middle region of MAGUIN-1 containing the PH domain. However, in contrast to the dominant active mutant of Ki-Ras, which interacts with Raf-1, recruits it to the plasma membrane from the cytosol, and activates it, MAGUIN-1 neither activates Raf-1 nor recruits it to the plasma membrane. MAGUIN-1 may link Raf-1 to components of synapses assembled by PSD-95/SAP90 and S-SCAM.  相似文献   

15.
An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367–606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients’ lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.  相似文献   

16.
PTEN (phosphatase and tensin homologue deleted on chromosome 10), a potent tumour suppressor and multifunctional signalling protein, is under intricate regulation. In the present study, we have investigated the mechanism and regulation of PTEN ubiquitination catalysed by NEDD4-1 (neural-precursor-cell-expressed, developmentally down-regulated 4-1), a ubiquitin ligase for PTEN we identified recently. Using the reconstituted assay and cellular analysis, we demonstrated that NEDD4-1-mediated PTEN ubiquitination depends on its intact HECT (homologous to E6-associated protein C-terminus) domain. Instead of using its WW domains (protein-protein interaction domains containing two conserved tryptophan residues) as a protein interaction module, NEDD4-1 interacts with PTEN through its N-terminal region containing a C2 domain as well as the HECT domain. Strikingly, we found that a C-terminal truncated PTEN fragment binds to NEDD4-1 with higher affinity than the full-length PTEN, suggesting an intrinsic inhibitory effect of the PTEN C-terminus on PTEN-NEDD4-1 interaction. Moreover, the C-terminal truncated PTEN is more sensitive to NEDD4-1-mediated ubiquitination and degradation. Therefore the present study reveals that the C-terminus of PTEN plays a critical role in stabilizing PTEN via antagonizing NEDD4-1-induced PTEN protein decay; conversely, truncation of the PTEN C-terminus results in rapid NEDD4-1-mediated PTEN degradation, a possible mechanism accounting for attenuation of PTEN function by certain PTEN mutations in human cancers.  相似文献   

17.
Cerebrospinal fluid (CSF) from 20 male patients with nonneurologic disease (age 64.5 +/- 2.8 SEM) was analyzed for the presence of the serpin alpha 1-antichymotrypsin (alpha 1-ACT). A chymotrypsin-specific chromogenic substrate (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide) was used to examine the CSF samples. All CSF samples showed inhibitory activity ranging from 45 to 80% inhibition. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the samples revealed the presence of a 68-kDa protein migrating identical to authentic human plasma alpha 1-ACT. Complex formation was performed with iodinated bovine chymotrypsin for several representative CSF samples having the highest chymotrypsin inhibitory activity. Comparison was made with complex formation performed with commercially available authentic human plasma alpha 1-ACT. These studies showed the formation of complexes at 37 degrees C, regardless of whether the sample was subsequently boiled or not. In the case of CSF, two complex bands, mass smaller than with plasma alpha 1-ACT, were formed at the lower temperature whereas a single higher Mr band was formed when the samples were boiled. To determine whether cleavage of the serpin occurred, these studies were repeated using human neutrophil cathepsin G as target protease. A complex of approximately 90 kDa was formed with human alpha 1-ACT under these same conditions. alpha 1-ACT has been detected in senile amyloid plaques in brains of Alzheimer's disease patients, the only plasma serine protease inhibitor localized to these structures. Another serpin, protease nexin I, is also found in these plaques, but this inhibitor does not circulate in plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Du H  Massiah MA 《PloS one》2011,6(12):e28877
Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1.  相似文献   

20.
BACKGROUND: The reactive center loops (RCL) of serpins undergo large conformational changes triggered by the interaction with their target protease. Available crystallographic data suggest that the serpin RCL is polymorphic, but the relevance of the observed conformations to the competent active structure and the conformational changes that occur on binding target protease has remained obscure. New high-resolution data on an active serpin, serpin 1K from the moth hornworm Manduca sexta, provide insights into how active serpins are stabilized and how conformational changes are induced by protease binding. RESULTS: The 2.1 A structure shows that the RCL of serpin 1K, like that of active alpha1-antitrypsin, is canonical, complimentary and ready to bind to the target protease between P3 and P3 (where P refers to standard protease nomenclature),. In the hinge region (P17-P13), however, the RCL of serpin 1K, like ovalbumin and alpha1-antichymotrypsin, forms tight interactions that stabilize the five-stranded closed form of betasheet A. These interactions are not present in, and are not compatible with, the observed structure of active alpha1-antitrypsin. CONCLUSIONS: Serpin 1K may represent the best resting conformation for serpins - canonical near P1, but stabilized in the closed conformation of betasheet A. By comparison with other active serpins, especially alpha1-antitrypsin, a model is proposed in which interaction with the target protease near P1 leads to conformational changes in betasheet A of the serpin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号