首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spring radiation frost is a major abiotic stress in southern Australia, reducing yield potential and grain quality of barley by damaging sensitive reproductive organs in the latter stages of development. Field-based screening methods were developed, and genetic variation for reproductive frost tolerance was identified. Mapping populations that were segregating for reproductive frost tolerance were screened and significant QTL identified. QTL on chromosome 2HL were identified for frost-induced floret sterility in two different populations at the same genomic location. This QTL was not associated with previously reported developmental or stress-response loci. QTL on chromosome 5HL were identified for frost-induced floret sterility and frost-induced grain damage in all three of the populations studied. The locations of QTL were coincident with previously reported vegetative frost tolerance loci close to the vrn-H1 locus. This locus on chromosome 5HL has now been associated with response to cold stress at both vegetative and reproductive developmental stages in barley. This study will allow reproductive frost tolerance to be seriously pursued as a breeding objective by facilitating a change from difficult phenotypic selection to high-throughput genotypic selection.  相似文献   

2.
Summary A diploid Allium cepa plant was recovered from the backcross of an interspecific triploid (2 x A. cepa + 1 x A. fistulosum) to an A. cepa diploid which exhibited both A. cepa and A. fistulosum Adh-1 alleles. Cytogenetic analyses revealed a recombinant sub-telocentric chromosome. The ADH-1 locus is believed to be on the long arm of the sub-telocentric A. fistulosum chromosome 5. Meiosis of the triploid progenitor gives strong evidence that recombination occurred. A. fistulosum chromosome 8 has been substituted for A. cepa chromosome 1.Contribution of the College of Agricultural Sciences, Texas Tech University, Journal No. T-4-275  相似文献   

3.
We describe the cloning and characterization of a new gene family of adenylyl cyclase related genes in Drosophila. The five adenylyl cyclase-like genes that define this family are clearly distinct from previously known adenylyl cyclases. One member forms a unique locus on chromosome 3 whereas the other four members form a tightly clustered, tandemly repeated array on chromosome 2. The genes on chromosome 2 are transcribed in the male germline in a doublesex dependent manner and are expressed in postmitotic, meiotic, and early differentiating sperm. These genes therefore provide the first evidence for a role for the cAMP signaling pathway in Drosophila spermatogenesis. Expression from this locus is under the control of the always early, cannonball, meiosis arrest, and spermatocyte arrest genes that are required for the G2/M transition of meiosis I during spermatogenesis, implying a mechanism for the coordination of differentiation and proliferation. Evidence is also provided for positive selection at the locus on chromosome 2 which suggests this gene family is actively evolving and may play a novel role in spermatogenesis. Received: 26 September 1999 / Accepted: 27 October 1999  相似文献   

4.
Bi-directional selective genotyping (BSG) carried out on two opposite groups of F9(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS). Two AAD loci on chromosome arm 3RL coincided with PHSD loci. The AAD locus on chromosome arm 3RS was independent from PHS, whereas that on chromosome 6RL belonged to the PHSR class. AAR-PHSR loci were found on chromosomes 4RS (one locus) and 5R (two loci) and AAE-PHSE loci were identified on chromosomes 1RL (one locus) and 5RL (one locus). Some PHSD loci represented the AAE (chromosomes 1RL, 3RS and 3RL) or AAR classes (chromosome 5RL). AAR and AAE loci not related to PHS were found on chromosomes 1RL, 2R, 3RS, 4R, 6RL and 7RL. On the other hand, several PHS loci (1RL, 3RS, 5RL, 6RS and 7RS) had no effect on alpha-amylase activity. Allele originating from the parental line 541 mapped in six AA loci on chromosomes 2R (two loci), 5R (three loci) and 7R (one locus) exerted opposite effects on PHS and alpha-amylase activity. Differences between the AA and PHS systems of loci may explain the weak correlation between these two traits observed among recombinant inbred lines. Strategies for the breeding of sprouting-resistant varieties with low alpha-amylase and high PHS resistance are discussed.  相似文献   

5.
We have mapped the TNNC1 gene, whose protein product is the cardiac TnI protein. TnI is one of the proteins that makes up the troponin complex, which mediates the response of muscle to calcium ions. The human TNNC1 locus had been assigned to a large region of chromosome 19, and we have refined the mapping position to the distal end of the chromosome by amplification of DNAs from a chromosome 19 mapping panel. We have also mapped the mouse Tnnc1 locus, by following the segregation of an intron sequence through DNAs from the European Interspecific Backcross. Tnnc1 maps close to the centromere on mouse chromosome 7.  相似文献   

6.
Frost at flowering can cause significant damage to cereal crops. QTL for low temperature tolerance in reproductive tissues (LTR tolerance) were previously described on barley 2HL and 5HL chromosome arms. With the aim of identifying potential LTR tolerance mechanisms, barley Amagi Nijo × WI2585 and Haruna Nijo × Galleon populations were examined for flowering time and spike morphology traits associated with the LTR tolerance loci. In spring-type progeny of both crosses, winter alleles at the Vrn-H1 vernalization response locus on 5H were linked in coupling with LTR tolerance and were unexpectedly associated with earlier flowering. In contrast, tolerance on 2HL was coupled with late flowering alleles at a locus we named Flt-2L. Both chromosome regions influenced chasmogamy/cleistogamy (open/closed florets), although tolerance was associated with cleistogamy at the 2HL locus and chasmogamy at the 5HL locus. LTR tolerance controlled by both loci was accompanied by shorter spikes, which were due to fewer florets per spike on 5HL, but shorter rachis internodes on 2HL. The Eps-2S locus also segregated in both crosses and influenced spike length and flowering time but not LTR tolerance. Thus, none of the traits was consistently correlated with LTR tolerance, suggesting that the tolerance may be due to some other visible trait or an intrinsic (biochemical) property. Winter alleles at the Vrn-H1 locus and short rachis internodes may be of potential use in barley breeding, as markers for selection of LTR tolerance at 5HL and 2HL loci, respectively. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
5S-RNA genes of barley are located on the second chromosome   总被引:1,自引:0,他引:1  
Summary The genes coding for 5S RNA in barley were cloned, sequenced, and their cluster was assigned to chromosome 2 using wheat-barley chromosome addition lines. High-resolution gel-electrophoresis of DNA and subsequent hybridization revealed new details of the organization of 5S DNA both in wheat and barley. The in situ hybridization of the cloned 5S gene with triploid endosperm nuclei also suggests that these genes are located in a single locus.On leave from: Department of Plant Breeding and Genetics, College of Agriculture, Orissa University of Agriculture & Technology, Bhubaneswar-751003, India  相似文献   

8.
A population of diploid potato (Solanum tuberosum) was used for the genetic analysis and mapping of a locus for resistance to the potato cyst nematode Globodera rostochiensis, introgressed from the wild potato species Solanum vernei. Resistance tests of 108 genotypes of a F1 population revealed the presence of a single locus with a dominant allele for resistance to G. rostochiensis pathotype Ro1. This locus, designated GroV1, was located on chromosome 5 with RFLP markers. Fine-mapping was performed with RAPD and SCAR markers. The GroV1 locus was found in the same region of the potato genome as the S. tuberosum ssp. andigena H1 nematode resistance locus. Both resistance loci could not excluded to be allelic. The identification of markers flanking the GroV1 locus offers a valuable strategy for marker-assisted selection for introgression of this nematode resistance.Abbreviations BSA bulked segregant analysis - RAPD random-amplified polymorphic DNA - RFLP restriction fragment length polymorphism - SCAR sequence-characterized amplified region  相似文献   

9.
The R1 allele confers on potato a race-specific resistance to Phytophthora infestans. The corresponding genetic locus maps on chromosome V in a region in which several other resistance genes are also located. As part of a strategy for cloning R1, a high-resolution genetic map was constructed for the segment of chromosome V that is bordered by the RFLP loci GP21 and GP179 and includes the R1 locus. Bulked segregant analysis and markers based on amplified fragment length polymorphisms (AFLP markers) were used to select molecular markers closely linked to R1. Twenty-nine of approximately 3200 informative AFLP loci displayed linkage to the R1 locus. Based on the genotypic analysis of 461 gametes, eight loci mapped within the GP21–GP179 interval. Two of those could not be seperated from R1 by recombination. For genotyping large numbers of plants with respect to the flanking markers GP21 and GP179 PCR based assays were also developed which allowed marker-assisted selection of plants with genotypes Rr and rr and of recombinant plants.  相似文献   

10.
Summary The structural gene, PHO13, for the specific p-nitrophenyl phosphatase of Saccharomyces cerevisiae was cloned and its nucleotide sequence determined. The deduced PHO13 protein consists of 312 amino acids and its molecular weight is 34635. The disruption of the PHO13 gene produced no effect on cell growth, sporulation, or viability of ascospores. The PHO13 locus was mapped at 1.9 centimorgans from the HO locus on the left arm of chromosome IV. By chromosome fragmentation, the PHO13 locus was found to be located about 72 kb from the left-hand telomere of chromosome IV and distal to the HO locus.  相似文献   

11.
The F2 progeny of a cross between a chromosome 2 multiple marker stock and an adapted cultivar of barley were analyzed for four morphological markers and electrophoretic patterns of eight leaf isozymes. TheIdh-2 locus was linked to thePer-5 locus (27.96±5.07 cM) and to thee locus (10.26±3.13 cM). Also, thePer-5 ande loci were located on the short arm of chromosome 2. In additionIdh-2 was also located on barley chromosome 2 and was linked to thev locus (13.18±3.56 cM), which is located on the long arm of chromosome 2. Two other marker genes,li andwst,,B, were linked (26.50±5.24 cM) on chromosome 2 but segregate independently of the other loci evaluated. This project was supported by funds from the U.S.-Spain Joint Committee for Scientific and Technological Cooperation.  相似文献   

12.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

13.
 The tomato (Lycopersicon esculentum) high-pigment (hp) locus was originally described as having enhanced fruit-quality characteristics and has also been shown to regulate responses to light during growth and development. Specifically, the hp phenotype suggests that the normal HP gene-product serves as a negative regulator of light signal-transduction, as has been proposed for many of the previously described Arabidopsis thaliana photomorphogenic mutants. Consequently, hp represents a tool for both genetic dissection of light signal-transduction and manipulation of fruit quality in tomato. As a first step toward isolation of the HP gene, the hp locus was mapped to tomato chromosome 2, adjacent to the 45s rDNA locus, using DNA markers and an interspecific cross of L. esculentum×L. cheesmannii. We have simultaneously identified DNA markers which may be useful for gene isolation and marker-assisted selection. We have additionally extended characterization of the hp phenotype to demonstrate increased sucrose and flavonoid accumulation in ripe hp/hp fruit. Analysis of plastid DNA copy number relative to genomic DNA content indicates that the hp locus regulates plastome DNA concentration, and possibly plastid number, in response to light. Received: 26 June 1997 / Accepted: 22 July 1997  相似文献   

14.
Here we present a correction to our article "Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura ". We have recently detected an error concerning the application of the Ln RH formula – a test to detect positive selection – to our microsatellite data. Here we provide the corrected data and discuss its implications for our overall findings. The corrections presented here have produced some changes relative to our previous results, namely in a locus (dsub14) that presents indications of being affected by positive selection. In general, our populations present less consistent indications of positive selection for this particular locus in both periods studied – between generations 3 and 14 and between generation 14 and 40 of laboratory adaptation. Despite this, the main findings of our study regarding the possibility of positive selection acting on that particular microsatellite still hold. As previously concluded in our article, further studies should be performed on this specific microsatellite locus (and neighboring areas) to elucidate in greater detail the evolutionary forces acting on this specific region of the O chromosome of Drosophila subobscura.  相似文献   

15.
The genetic basis of pear-shaped tomato fruit   总被引:1,自引:0,他引:1  
Molecular-marker analysis of a cross between yellow pear, a tomato variety bearing small, pear-shaped fruit, and the round-fruited, wild species, Lycopersicon pimpinellifolium LA1589, revealed that pear-shaped fruit is determined largely by a major QTL on chromosome 2 and, to a lesser extent, a minor QTL on chromosome 10. The locus on chromosome 2 was also detected in a cross between yellow pear and the round-fruited introgression line (IL2–5) which carried the distal portion of chromosome 2 from the Lycopersicon pennellii genome. Based on its map position, we propose that the locus detected on chromosome 2 is the same as a locus referred to as ovate in the early tomato literature (Linstrom 1926, 1927). The fruit-shape index (length/diameter) and neck constriction were highly correlated in both populations suggesting that ovate exerts control over both traits or that the genes for these traits are tightly linked on chromosome 2. Using two-way ANOVA test, the minor QTL on chromosome 10 showed no significant interaction with the ovate locus on chromosome 2 with respect to the fruit-shape index. For ovate round fruit was dominant to elongated fruit in the L. pimpinellifolium populations, but additive in the IL2–5 population. Thus far, no genes controlling fruit shape have been cloned. The molecular mapping of the ovate locus may ultimately lead to its isolation via map-based cloning. Received: 8 January 1999 / Accepted: 30 January 1999  相似文献   

16.
Summary The nar2 locus that codes for a protein involved in molybdenum cofactor function in nitrate reductase and other molybdoenzymes was mapped to barley chromosome 7. F2 genotypic data from F3 head rows indicated nar2 is located 8.4±2.1 and 23.0± 4.6 cm from the narrow leaf dwarf (nld) and mottled seedling (mt2) loci, respectively. This locates the nar2 locus at 54.7±3.1 cm from the short-haired rachilla (s) locus near the centromere of chromosome 7. Close linkage of nar2 with DDT resistance (ddt) and high lysine (lys3) loci was detected but could not be quantified due to deviations from the individual expected 121 segregations for the ddt and lys3 genes. Southern blots of wheat-barley addition lines probed with a nitrate reductase cDNA located the NADH : nitrate reductase structural gene, nar1, to chromosome 6.Scientific Paper No. 7762. College of Agriculture and Home Economics Research Center, Washington State University, Project No. 0745. This investigation was supported in part by United States Department of Agriculture Grant No. 86-CRCR-1-2004  相似文献   

17.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

18.
Summary The nucleolus organizer region located on the short arm of chromosome 1R of rye consists of a large cluster of genes that code for ribosomal RNA (designated the Nor-R1 locus). The genes in the cluster are separated by spacer regions which can vary in length in different rye lines. Differences in the spacer regions were scored in two families of F2 progeny. Segregation also occurred, in one or both of the families, at two seed protein loci and at two isozyme loci also located on chromosome 1R. The seed protein loci were identified as the Sec 1 locus controlling -secalins located on the short arm of chromosome 1R and the Sec 3 locus controlling high-molecular-weight secalins located on the long arm of 1R. The two isozyme loci were the Gpi-R1 locus controlling glucose-phosphate isomerase isozymes and the Pgd 2 locus controlling phosphogluconate dehydrogenase isozymes. The data indicated linkage between all five loci and map distances were calculated. The results indicate a gene order: Pgd 2 ... Sec 3 ... [centromere] ... Nor-R1 ... Gpi-R1 ... Sec 1. Evidence was obtained that rye possesses a minor 5S RNA locus (chromosome location unknown) in addition to the major 5S RNA locus previously shown to be located on the short arm of chromosome 1R.  相似文献   

19.
Precise mapping of a locus affecting grain protein content in durum wheat   总被引:12,自引:0,他引:12  
Grain protein content (GPC) is an important factor in pasta and breadmaking quality, and in human nutrition. It is also an important trait for wheat growers because premium prices are frequently paid for wheat with high GPC. A promising source for alleles to increase GPC was detected on chromosome 6B of Triticum turgidum var. dicoccoides accession FA-15-3 (DIC). Two previous quantitative trait locus (QTL) studies found that the positive effect of DIC-6B was associated to a single locus located between the centromere and the Nor-B2 locus on the short arm of chromosome 6B. Microsatellite markers Xgwm508 and Xgwm193 flanking the QTL region were used in this study to develop 20 new homozygous recombinant substitution lines (RSLs) with crossovers between these markers. These 20 RSLs, plus nine RSLs developed in previous studies were characterized with four new RFLP markers located within this chromosome segment. Grain protein content was determined in three field experiments organized as randomized complete block designs with ten replications each. The QTL peaks for protein content were located in the central region of a 2.7-cM interval between RFLP markers Xcdo365 and Xucw67 in the three experiments. Statistical analyses showed that almost all lines could be classified unequivocally within low- and high- protein groups, facilitating the mapping of this trait as a single Mendelian locus designated Gpc-6B1. The Gpc-6B1 locus was mapped 1.5-cM proximal to Xcdo365 and 1.2-cM distal to Xucw67. These new markers can be used to reduce the size of the DIC chromosome segment selected in marker-assisted selection programs. Markers Nor-B2 and Xucw66 flanking the previous two markers can be used to select against the DIC segment and reduce the linkage drag during the transfer of Gpc-6B1 into commercial bread and pasta wheat varieties. The precise mapping of the high GPC gene, the high frequency of recombinants recovered in the targeted region, and the recent development of a tetraploid BAC library including the Gpc-6B1 DIC allele are the first steps towards the map-based cloning of this gene.Communicated by J. Dvorak  相似文献   

20.
Fusarium head blight (FHB) resistance was evaluated in a set of recombinant inbred (RI) lines from a cross between Russia 6 (resistant) and H.E.S. 4 (susceptible), which had one of the widest differences of FHB resistance reactions among ca. 5,000 barley germplasm accessions in Okayama University. Field-grown spikes were sampled and inoculated by the ‘cut-spike test’. Resistance reactions on the parents and RI lines were scored by eleven grades, from resistant (0) to susceptible (10). Quantitative trait loci (QTL) analysis detected three QTL: two located on the long arm of chromosome 2H, and another on the short arm of chromosome 5H. A QTL located on chromosome 2H was coincident with the vrs1 locus, which governs inflorescence row type. The other QTL on chromosome 2H was positioned in the vicinity of cleistogamy locus (cly1 or Cly2) that determines inflorescence opening/closing. Resistant gene analog (RGA) and expressed sequence tag (EST) markers with homology for disease resistance genes were integrated into the high-density linkage map. Most of these markers were not localized near the identified resistance QTL, except for one RGA marker (FXLRRfor_XLRRrev170) localized in the vicinity of the cly1/Cly2 locus. Five AFLP markers localized in the vicinity of the identified QTL were sequenced to convert them into sequence tagged site (STS) markers. Genotyping of each RI line using two AFLP–STS markers and the vrs1 locus indicated that the RI lines with three Russia 6 QTL alleles exhibited the same level of high FHB resistance reactions as Russia 6. In contrast, RI lines with three susceptible alleles showed reactions close to H.E.S. 4. Therefore, the markers closely linked to the QTL can be efficiently used for the selection of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号