首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytomatrix synthesis in MDCK epithelial cells   总被引:1,自引:0,他引:1  
Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak (J. Biol. Chem., 256:4863-4870, 1981), was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with [14C]leucine over several days and then pulse-labeled for 4 hours with [3H]leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form. The results suggest that metabolic coupling between individual cellular filament systems is not strict. The data are, however, consistent with models that predict that assembly of a subcellular structure influences the turnover of its component proteins.  相似文献   

2.
Polarity of the Forssman glycolipid in MDCK epithelial cells   总被引:3,自引:0,他引:3  
To determine whether epithelial plasma membrane glycolipids are polarized in a manner analogous to membrane proteins, MDCK cells grown on permeable filters were analyzed for the expression of Forssman ceramide pentasaccharide, the major neutral glycolipid in these cells. In contrast to a recent report which described exclusive apical localization of the Forssman glycolipid (Hansson, G.C., Simons, K. and Van Meer, G. (1986) EMBO J. 5, 483-489), immunofluorescence and immunoelectron microscopic staining revealed the Forssman glycolipid on both the apical and basolateral surfaces of polarized cells. Immunoblots indicated that the Forssman antigen was detectable only on glycolipids and not on proteins. Analysis of metabolically labeled glycolipids released into the apical and basal culture medium, either as shed membrane vesicles or in budding viruses, also demonstrated the presence of the Forssman glycolipid on both apical and basolateral membranes of polarized cells. Quantitation of the released glycolipid indicated that the Forssman glycolipid was concentrated in the apical membrane. These results are consistent with previous reports which described quantitative enrichment of glycolipids in the apical domain of several epithelia.  相似文献   

3.
SNARE protein trafficking in polarized MDCK cells   总被引:3,自引:0,他引:3  
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains. This polarity is generated and maintained by the continuous sorting of apical and basolateral components in the secretory and endocytic pathways. Soluble N-ethyl maleimide-sensitive factor attachment protein receptors (SNARE) proteins of vesicle-associated membrane protein (VAMP) and syntaxin families have been suggested to play a role in the biosynthetic transport to the apical and basolateral plasma membranes of polarized cells, where they likely mediate membrane fusion. To investigate the involvement of SNARE proteins in membrane trafficking to the apical and basolateral plasma membrane in the endocytic pathway we have monitored the recycling of various VAMP and syntaxin molecules between intracellular compartments and the two plasma membrane domains in Madin–Darby canine kidney (MDCK) cells. Here we show that VAMP8/endobrevin cycles through the apical but not through the basolateral plasma membrane. Furthermore, we found that VAMP8 localizes to apical endosomal membranes in nephric tubule epithelium and in MDCK cells. This asymmetry in localization and cycling behavior suggests that VAMP8/endobrevin may play a role in apical endosomal trafficking in polarized epithelium cells.  相似文献   

4.
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a “sorting escort” (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as “sorting escorts” to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells. David V. Cohn—Deceased.  相似文献   

5.
Tight junction formation in cultured epithelial cells (MDCK)   总被引:21,自引:0,他引:21  
Summary Synthesis and assembly of tight junctions are studied in monolayers of MDCK cells plated at a density sufficient for confluence, allowed to attach for 1 hr, and transferred to fresh media without cells containing or not Ca2+, 20 hr later, while monolayers with Ca2+ have fully developed junctions that confer an electrical resistance across of 346±51 cm2, those without Ca2+ have a negligible resistance. If at this time Ca2+ is added, junctions assemble and seal with a fast kinetics, that can be followed through the development of electrical resistance, penetration of ruthenium red, and electron microscopy. Drugs that impair synthesis, maturation and transport of proteins (cycloheximide, tunicamycin, monensin) indicate that protein components are synthesized early upon plating, do not seem to require N-glycosylation, and are stored in the Golgi compartment. Upon addition of Ca2+ they are transferred to the membrane with the participation of microfilaments but not of microtubules. These components seem to insert directly in the position they occupy in the strands, and the cell circles its perimeter with one strand as early as 15 min, even if in some segments it only consists of a row of particles. New strands develop in association with previous ones, and the pattern completes in 4 to 6 hr. Ca2+ is required for the maintenance of the assembly and also for the sealing with neighboring cells. These processes cannot occur below 25°C. Serum is not required. Polarized distribution of intramembrane particles (IMP) in apical and basolateral regions follows the same time course as junction formation, in spite of the fence constituted by those strands that are already assembled. This suggests that IMP do not redistribute by lateral displacements in the plane of the membrane, but by removal and insertion in the apical and basolateral domains.  相似文献   

6.
7.
8.
《The Journal of cell biology》1994,125(5):1025-1035
We have reconstituted polarized protein transport in streptolysin O- permeabilized MDCK cells from the TGN to the basolateral surface and to the apical surface. These transport steps are dependent on temperature, energy and exogenously supplied cytosol. Using this in vitro system we show that a whole tail peptide (WT peptide) corresponding to the cytoplasmic tail of a basolaterally sorted protein, the vesicular stomatitis virus glycoprotein (VSV G) inhibits the TGN to basolateral transport but does not affect any other transport step. Inhibition of VSV G transport to basolateral surface by WT peptide did not result in missorting of the protein to the apical surface. Mutation of the single tyrosine residue in the WT peptide reduced its inhibitory potency four- to fivefold. These results suggest that the VSV G tail physically interacts with a component of the sorting machinery. Using a cross- linking approach, we have identified proteins that associate with the cytoplasmic tail domain of VSV G. One of these polypeptides, Tin-2 (Tail interacting protein-2), associates with VSV G in the TGN, the site of protein sorting, but not in the ER nor at the cell surface. Tin- 2 does not associate with apically targeted hemagglutinin. WT peptide that inhibited the basolateral transport of VSV G also inhibited the association of Tin-2 with VSV G. Together, these properties make Tin-2 a candidate basolateral sorter. The results demonstrate the usefulness of the SLO-permeabilized cell system in dissecting the sorting machinery.  相似文献   

9.
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.  相似文献   

10.
11.
Claudin-1 contributes to the epithelial barrier function in MDCK cells   总被引:12,自引:0,他引:12  
Tight junctions (TJs) create a paracellular permeability barrier and also act as a fence preventing intermixing of proteins and lipids between the apical and basolateral plasma membranes. Recently, claudin-1 has been identified as an integral membrane protein localizing at TJs, and introduced claudin-1 can form TJ-like networks in fibroblasts. To investigate the function of claudin-1, MDCK cells were transfected with a mammalian expression vector containing myc-tagged mouse claudin-1, and four stable clones were obtained. The myc-tagged claudin-1 precisely colocalized with both occludin and ZO-1 at cell-cell contact sites, indicating that exogenous claudin-1 was properly targeted to the TJs. Immunoblot analysis revealed that overexpression of claudin-1 increased expression of ZO-1 but not of occludin or ZO-2. The barrier functions of these cells were evaluated by transepithelial electrical resistance (TER) and paracellular flux. Claudin-1-expressing cells exhibited about four times higher TER than wild-type MDCK cells. Consistent with the increase of TER, the cells overexpressing claudin-1 showed reduced paracellular flux, estimated at 4 and 40 kD FITC-dextrans. These results suggest that claudin-1 is involved in the barrier function at TJs.  相似文献   

12.
Fluorescent in situ hybridization with chromosome specific probes was used in conjunction with laser scanning confocal microscopy to assess the three-dimensional distribution of chromosomes in human T-lymphocyte nuclei. Cells in the G1-phase of the cell cycle exhibit a distinctly non-random chromosome organization: centromeric regions of the ten chromosomes examined are localized on the nuclear periphery, often making contact with the nuclear membrane, while telomeric domains are consistently localized within the interior 50% of the nuclear volume. Chromosome homolog pairing is not observed. Transition from the G1 to G2 cell cycle phase is accompanied by extensive chromosome movement, with centromeres assuming a more interior location. Chromosome condensation and chromatin depleted areas are observed in a small subset of G2 nuclei approaching mitosis. These results demonstrate that dynamic chromosome rearrangements occur in non-mitotic nuclei during the cell cycle.by L. Manuelidis  相似文献   

13.
The receptor mediated activation of phospholipase A2 by appropriate ligands results in the synthesis and release of eicosanoids, a class of potent bioregulatory molecules. Madin-Darby canine kidney cells (MDCK) are polarized epithelial cells, with structurally and functionally distinct plasma membrane domains separated by tight junctions. Using MDCK cells grown in dual sided chambers, we show in this report, that a) the receptor mediated release of prostaglandins and arachidonate into the extracellular medium is predominantly unidirectional, b) the direction of release is agonist specific, and c) the magnitude of the response due to a given agonist is cell-domain specific. These characteristics, if operative in vivo, would contribute towards the optimal function of trans-cellular metabolism of eicosanoids already demonstrated.  相似文献   

14.
A-kinase-anchoring protein (AKAP) 79/150 organizes a scaffold of cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and protein phosphatase 2B/calcineurin that regulates phosphorylation pathways underlying neuronal long-term potentiation and long-term depression (LTD) synaptic plasticity. AKAP79/150 postsynaptic targeting requires three N-terminal basic domains that bind F-actin and acidic phospholipids. Here, we report a novel interaction of these domains with cadherin adhesion molecules that are linked to actin through beta-catenin (beta-cat) at neuronal synapses and epithelial adherens junctions. Mapping the AKAP binding site in cadherins identified overlap with beta-cat binding; however, no competition between AKAP and beta-cat binding to cadherins was detected in vitro. Accordingly, AKAP79/150 exhibited polarized localization with beta-cat and cadherins in epithelial cell lateral membranes, and beta-cat was present in AKAP-cadherin complexes isolated from epithelial cells, cultured neurons, and rat brain synaptic membranes. Inhibition of epithelial cell cadherin adhesion and actin polymerization redistributed intact AKAP-cadherin complexes from lateral membranes to intracellular compartments. In contrast, stimulation of neuronal pathways implicated in LTD that depolymerize postsynaptic F-actin disrupted AKAP-cadherin interactions and resulted in loss of the AKAP, but not cadherins, from synapses. This neuronal regulation of AKAP79/150 targeting to cadherins may be important in functional and structural synaptic modifications underlying plasticity.  相似文献   

15.
16.
17.
Forssman antigen, a neutral glycosphingolipid carrying five monosaccharides, was localized in epithelial MDCK cells by the immunogold technique. Labeling with a well defined mAb and protein A-gold after freeze-substitution and low temperature embedding in Lowicryl HM20 of aldehyde-fixed and cryoprotected cells, resulted in high levels of specific labeling and excellent retention of cellular ultrastructure compared to ultra-thin cryosections. No Forssman glycolipid was lost from the cells during freeze-substitution as measured by radio-immunostaining of lipid extracts. Redistribution of the glycolipid between membranes did not occur. Forssman glycolipid, abundantly expressed on the surface of MDCK II cells, did not move to neighboring cell surfaces in cocultures with Forssman negative MDCK I cells, even though they were connected by tight junctions. The labeling density on the apical plasma membrane was 1.4-1.6 times higher than basolateral. Roughly two-thirds of the gold particles were found intracellularly. The Golgi complex was labeled for Forssman as were endosomes, identified by endocytosed albumin-gold, and lysosomes, defined by double labeling for cathepsin D. In most cases, the nuclear envelope was Forssman positive, but the labeling density was 10-fold less than on the plasma membrane. Mitochondria and peroxisomes, the latter identified by catalase, remained free of label, consistent with the notion that they do not receive transport vesicles carrying glycosphingolipids. The present method of lipid immunolabeling holds great potential for the localization of other antigenic lipids.  相似文献   

18.
Horseradish peroxidase (HRP) was conjugated to nondegradable polycationic poly(D-lysine) (PDL) through either a thioether (HRP-S-PDL) or a disulfide (HRP-SS-PDL) linkage. The binding and transcytosis of these conjugates was studied in Madin-Darby canine kidney (MDCK) cell monolayers grown on 3-microns microporous polycarbonate filters. Conjugation of HRP to PDL with both linkages markedly increased the binding of this protein onto the cell monolayers. However, an enhancement of the transcellular transport of HRP in both apical-to-basal and basal-to-apical directions was observed only in HRP-SS-PDL, but not in HRP-S-PDL. HRP-SS-PDL transport was inhibited by colchicine and by 4 degrees C incubation. The transport of 14C-sucrose was not affected by the presence of conjugates. These results indicate that the transport of the conjugate across the cell monolayers was due to a transcellular process rather than to any leakage of the cell junction caused by polycations. The disulfide linkage between HRP and PDL was cleaved rapidly at the basal and, to a lesser extent, at the apical surface of the cell. Neuraminidase treatment decreased the binding of the conjugates onto the cell surface, but did not decrease the transcellular transport, suggesting that not all surface-bound conjugates were available for transcytosis. These results demonstrate that disulfide linkages can be cleaved during transcytosis in MDCK cells. The cleavage, however, occurs mostly at the binding site on the cell surface, which may prevent the cellular uptake of the intact conjugate.  相似文献   

19.
Although the presence of a dominant basolateral sorting signal ensures that the majority of newly synthesized epidermal growth factor (EGF) receptors are delivered directly to the basolateral surface in polarized epithelial cells, a fraction of the receptors are also delivered to the apical surface. Similar to most basolateral membrane proteins, the EGF receptor has an additional signal(s) that selectively targets molecules lacking a dominant basolateral signal to the apical surface. Although the physiological relevance of signal hierarchy is not known, alternative targeting may occur in different epithelial cell types or during development. The goal of this study, therefore, was to determine the effect of membrane domain location on EGF receptor function, focusing on EGF-induced MAP kinase signaling and DNA synthesis. Whereas ligand responsiveness was restricted to the basolateral domain in Madin-Darby canine kidney (MDCK) cells expressing a normal complement of receptors, apical ligand was effective if apical receptor density was increased by overexpression of an exogenous wild-type human gene. Unexpectedly, cells expressing apically localized, cytoplasmically truncated receptors, which behave as dominant negative mutations in other cell types, were also responsive to apical EGF. The cytoplasmically truncated molecules appear to have at least two effects: first, to increase the local concentration of ligand at the apical cell surface; and second, to facilitate activation of the relatively few native EGF receptors normally located at the apical surface. These results indicate that cell context is a critical determinant of receptor mutant protein phenotype.  相似文献   

20.
The receptor mediated activation of phospholipase A2 by appropriate ligands results in the synthesis and release of eicosanoids, a class of potent bioregulatory molecules. Madin-Darby canine kidney cells (MDCK) are polarized epithelial cells, with structurally and functionally distinct plasma membrane domains separated by tight junctions. Using MDCK cells grown in dual sided chambers, we show in this report, that a) the receptor mediated release of prostaglandins and arachidonate into the extracellular medium is predominantly unidirectional, b) the direction of release is agonist specific, and c) the magnitude of the response due to a given agonist is cell-domain specific. These characteristics, if operative in vivo, would contribute towards the optimal function of trans-cellular metabolism of eicosanoids already demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号