共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of anti-ATPase antibodies with epitopes near Asp-351 (PR-8), Lys-515 (PR-11) and the ATP binding domain (D12) of the Ca(2+)-ATPase of sarcoplasmic reticulum (EC 3.6.1.38) was analyzed. The PR-8 and D12 antibodies reacted freely with the Ca(2+)-ATPase in the native membrane, indicating that their epitopes are exposed on the cytoplasmic surface. Both PR-8 and D12 interfered with the crystallization of the Ca(2+)-ATPase, suggesting that their binding sites are at interfaces between ATPase molecules. PR-11 had no effect on ATPase-ATPase interactions or on the ATPase activity of sarcoplasmic reticulum. The epitope of PR-11 is suggested to be the VIDRC sequence at residues 520-525, while that of D12 at residues 670-720 of the Ca(2+)-ATPase. The use of predictive algorithms of antigenicity for identification of potential antigenic determinants in the Ca(2+)-ATPase is analyzed. 相似文献
2.
Na+,K(+)-ATPase: genes, expression and membrane insertion 总被引:1,自引:0,他引:1
3.
Immunochemical evidence for a transmembrane orientation of both the (Na+, K+)-ATPase subunits 总被引:8,自引:0,他引:8
M Girardet K Geering J M Frantes D Geser B C Rossier J P Kraehenbuhl C Bron 《Biochemistry》1981,20(23):6684-6691
Antibodies were raised against the large catalytic subunit (apparent Mr 96000) and the glycoprotein (apparent Mr 60000) of the sodium- and potassium-dependent adenosine triphosphatase [(Na+, K+)-ATPase] from Bufo marinus. The specificity of each antiserum was assessed by two-dimensional immunoelectrophoresis using toad kidney microsomes or the purified holoenzyme as a source of antigen and by indirect immunoprecipitation of detergent-solubilized (Na+, K+)-ATPase subunits from radioiodinated or biosynthetically labeled kidney holoenzyme, microsomes, or postnuclear supernatant. The anticatalytic subunit serum reacted exclusively with a 96000-dalton protein. The antiserum to the glycoprotein was rendered specific to this subunit by absorption with purified catalytic subunit. The two antisera were agglutinating and lytic in the presence of complement when toad erythrocytes were used as targets, indicating that antigenic determinants of both subunits were exposed on the cell surface. The specific reactivities with surface-exposed antigenic determinants of both subunits could be absorbed with toad red blood cells. Such absorbed antisera still reacted with detergent-treated or untreated kidney microsomes, revealing the presence of cytoplasmic and/or intramembranous antigenic sites. Our immunochemical data demonstrate that the glycoprotein subunit of (Na+, K+)-ATPase spans the lipid bilayer and confirm the transmembrane orientation of the catalytic subunit postulated from functional studies. 相似文献
4.
M Coca-Prados L G López-Briones 《Biochemical and biophysical research communications》1987,145(1):460-466
Polyclonal antibodies against the canine kidney (Na+,K+)-ATPase were used to examine the localization and distribution of this protein in intact ciliary processes (CP) from bovine eyes by indirect immunofluorescence. The basolateral surface of non-pigmented (NPE) and pigmented (PE) ciliary epithelial cells was found to be stained specifically for the (Na+,K+)-ATPase. Immunoblot analysis of intact CP, separated PE and NPE cells by density gradients and cultured ciliary epithelial cells, revealed two forms of the catalytic subunit of the (Na+,K+)-ATPase: the alpha and alpha (+). The alpha (+) form was enriched in NPE cells while alpha was in PE cells. 相似文献
5.
(Na+, K+)-ATPase (EC 3.6.1.3) from kidney is more sensitive to inhibition by vanadate than red cell (Na+,K+)-ATPase. The difference appears to be in the apparent affinities of the two enzymes for K+ and Na+ at sites where K+ promotes and Na+ opposes vanadate binding. As a result of Na+-K+ competition at these sites, reversal of vanadate inhibition was accomplished at lower Na+ concentrations in red cell than in kidney (Na+,K+)-ATPase. It is possible that vanadate could selectively regulate Na+ transport in the kidney. 相似文献
6.
Dog kidney (Na+,K+)-ATPase is more sensitive to inhibition by vanadate than human red cell (Na+,K+)-ATPase 总被引:1,自引:0,他引:1
(Na+,K+)-ATPase (EC 3.6.1.3) from kidney is more sensitive to inhibition by vanadate than red cell (Na+,K+)-ATPase. The difference appears to be in the apparent affinities of the two enzymes for K+ and Na+ at sites where K+ promotes and Na+ opposes vanadate binding. As a result of Na+-K+ competition at these sites, reversal of vanadate inhibition was accomplished at lower Na+ concentrations in red cell than in kidney (NA+,K+)-ATPase. It is possible that vanadate could selectively regulate Na+ transport in the kidney. 相似文献
7.
W J Ball J H Collins L K Lane A Schwartz 《Archives of biochemistry and biophysics》1983,221(2):371-380
Antibodies were raised against isolated, delipidated catalytic [alpha] and glycoprotein [beta] subunits of the Na+,K+-dependent ATPase purified from lamb kidney medulla. The specificity of each antiserum was confirmed by agar double-diffusion precipitation, immunoelectrophoresis, and polyacrylamide gel electrophoresis. A solid phase adsorption assay was also employed to determine antibody binding titers and to further test the specificity of these antisera. Antibodies raised to the alpha subunit had a strong reactivity and similar titer values for both the holoenzyme and the alpha subunit and a low-affinity cross-reactivity with the beta subunit. In contrast, beta-subunit-directed antibodies had little reactivity or binding with the holoenzyme and a low-affinity cross-reactivity with the alpha subunit. Competition binding studies revealed that about 80% of the alpha-subunit-specific antibodies bound to the holoenzyme, indicating that similar sets of antigenic sites are exposed in the lipid-embedded holoenzyme complex and in the isolated alpha subunit. Competition binding studies also suggest that the subunit cross-reactivities of the antisera may not result from simple contamination of the respective antigens, but that there may be partial homologies of some antigenic sites. In addition, the beta-directed antibodies had no effect on Na+,K+-ATPase activity, while the alpha-directed antibodies were effective inhibitors of activity. This indicates that at least some functionally important antigenic sites of the alpha subunit may be unaltered by its isolation and delipidation. 相似文献
8.
Ontogeny of the (Na+,K+)-ATPase during chick skeletal myogenesis 总被引:3,自引:0,他引:3
9.
Kaplia AA Khizhniak SV Kudriavtseva AG Papageorgakopulu N Osinskiĭ DS 《Ukrainski? biokhimicheski? zhurnal》2006,78(1):29-42
A current state of researches on mechanisms of ion homeostasis regulation in the specific conditions of the uncontrolled malignant tumor growth (mainly in carcinomas) concerning the contribution of Na+,K+-ATPase, plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPases has been reviewed. Particular attention has been focused on the molecular and biochemical links providing the redistribution of the transporting ATPases isozyme pattern for the regulatory requirements of the cell signaling pathways at stable proliferation and viability in malignancy. 相似文献
10.
Some biophysical properties of a (Na+, K+)-ATPase preparation from guinea-pig kidney have been analysed. The recently developed technique of laser Doppler spectroscopy was applied to measure particle mobility under electrophoretic conditions. The following results were obtained: 1. magnesium ions at pH 7.3 decrease the mobility of the ATPase containing vesicles by binding to negatively charged surface groups. At pH 3.3 the competitive binding of protons causes a shift of the mobility vs. [Mg2+] curve to higher values of [Mg2+], 2. binding of ATP at pH 7.3 (Kd = 0.9 X 10(-4) M for (mM 1 NaCl, 0.2 KCl, 0.1 MgCl2, 0.1 Tris) was measured as an increase in particle mobility depending also on [Mg2+]. At pH 3.3 also unspecific ATP-binding occurred, 3. ITP and GTP had the same Kd value as ATP; ADP a slightly lower one (Kd = 1.2 X 10(-4) M). Tris-H3PO4 (Kd = 2.6 X 10(-4) M) was also able to increase particle mobility, but only at higher concentrations and not to the same extent as ATP; AMP induced only very small changes, 4. from the mobility-pH curve an isoelectric point of 4.1 is derived (buffer: 1 mM NaCl, 0.2 mM KCl, 0.1 mM MgCl2, 0.1 mM Tris). In the presence of 0.9 mM ATP the isoelectric point is shifted to 3.2. As the electrophoretic mobility is directly proportional to the net charge of the vesicles, the results may be interpreted as changes in surface charge density, originating from both a conformational change of the ATPase polypeptide and a decrease in vesicle size. 相似文献
11.
D L McGill 《Biochemistry》1991,30(27):6727-6734
The effects of several guanine nucleotide analogues on (Na+,K+)-ATPase activity of membranes isolated from several tissues were analyzed to determine if a G-protein might be involved in the hormonal regulation of the (Na+,K+)-ATPase. Submillimolar concentrations of GTP gamma S, but not GMPPNP, inhibit rat skeletal muscle and axolemma, but not kidney, (Na+,K+)-ATPase activity. Furthermore, GDP beta S does not reverse GTP gamma S inhibition, but rather itself slightly inhibits (Na+,K+)-ATPase activity. Dithiothreitol can block and reverse GTP gamma S inhibition of skeletal muscle (Na+,K+)-ATPase; the results obtained with axolemma membranes are complicated by the inhibition of (Na+,K+)-ATPase activity in these membranes by DTT. Results showing that high membrane concentrations can mute the inhibitory action of GTP gamma S suggest that a minor contaminant in GTP gamma S preparations is responsible for inhibiting (Na+,K+)-ATPase activity. Neither vanadate, a heavy metal, GDP, phosphate, nor thiophosphate, however, is responsible for this inhibition, and the inhibitory activity elutes with GTP gamma S from Sephadex G-10 columns. It is concluded that GTP gamma S or a structural derivative of GTP gamma S inhibits the (Na+,K+)-ATPase, in a tissue-specific manner, not by interaction with a G-protein as a GTP analogue, but through a direct chemical interaction with the (Na+,K+)-ATPase or some regulatory protein. The terminal SH group of the nucleotide analogue is probably required for this interaction. 相似文献
12.
Kaplia AA Kudriavtseva AG Gorchev VF Osinskiĭ DS Khizhniak SV 《Ukrainski? biokhimicheski? zhurnal》2006,78(2):142-148
Na+,K(+)-ATPase activities in macroscopically unchanged mucosa (conditionally normal tissue) and human colorectal carcinoma (mainly low-grade and moderately differentiated adenocarcinomas) have been investigated. Microsomal fractions are similar by dimensions of the membrane fragments detected by photon correlation spectroscopy analysis. The activation optima under digitonin pretreatment of the membrane fractions differ significantly for Na+,K(+)-ATPase and concomitant Mg(2+)-ATPase activity, but are the same in conditionally normal and cancerous tissues. This allows to detect correctly total levels of the Na+,K(+)-ATPase activity in the detergent-pretreated preparations. The moderate decrease of the Na+,K(+)-ATPase activity is revealed in carcinomas. It is concluded that a decrease of activity of the ouabain-sensitive human Na+,K(+)-ATPase is characteristic of colorectal carcinoma. 相似文献
13.
F Canestrari F Galli G Gheller S De Crescentini B Biagiarelli 《Bollettino della Società italiana di biologia sperimentale》1991,67(7):659-666
In the present work we reported the results of the study of erythrocyte membrane Na+,K(+)-adenosine triphosphatase (ATPase) and Mg(2+)-ATPase in patients with essential hypertension and controls. In the 40 patients with hypertension, a more marked decrease of Na+, K(+)-ATPase was observed. The behavior of the enzyme at Mg2+ activation, ouabain inhibition and the response to different temperature suggest the possibility of differences between the two groups. The normal erythrocyte Mg(2+)-ATPase activity in two groups suggest also the possible role of ratio Na+, K(+)-ATPase/Mg(2+)-ATPase in the study of essential hypertension. However the relevance of magnesium and Mg(2+)-ATPase to the pathogenesis of essential hypertension remains unclear but merits further study. On the basis of these considerations the aim of the present study was to identify, in a kinetic approach, the presence of different abnormalities of Na+ transport and Na+, K(+)-ATPase in erythrocytes from patients with essential hypertension. Much evidence has supported the hypothesis that essential hypertension is a heterogeneous disease in the pathophysiological mechanisms as well as in its clinical and therapeutical consideration. 相似文献
14.
Thermal stabilities of Na+,K(+)-ATPase isozymes from the rat brain and kidney tissues are compared. It is established that heat treatment of Na+,K(+)-ATPase preparations from the brain decreases the high affinity component of the ouabain inhibition of the enzyme activity due to selective inactivation of alpha-isoform. Its higher thermal lability in comparison with alpha-isoform is confirmed. 相似文献
15.
D B Schenk R Grosse M H Ellisman V Bradshaw H L Leffert 《Analytical biochemistry》1982,125(1):189-196
A new assay is described for rat (Na+,K+)-ATPase [EC 3.6.1.3] prepared from renal medullary or crude liver membranes. With ATP at 1 μm, initial rates of ouabain-sensitive decreases in substrate concentrations are followed by measuring diminished ATP-driven luciferin-luciferase light production. Under these conditions, using highly purified enzyme preparations, Na+ and K+ ions stimulate and inhibit initial ATP hydrolysis rates, respectively. Therefore, it is likely that the assay measures Na+-ATPase partial reactions of the pump. A monospecific polyclonal rabbit anti-rat pump antiserum blocks Na+-dependent ATPase measured with the luciferase-linked ATPase assay, whereas conventional assays of purified pump activity at 3.0 mm ATP fail to reveal immunochemical blockade. 相似文献
16.
Vladimirova NM Sautkina EN Murav'eva TI Ovchinnikova TV Potapenko NA 《Bioorganicheskaia khimiia》2003,29(2):146-158
Functionally active preparations of Na+,K(+)-ATPase isozymes from calf brain that contain catalytic subunits of three types (alpha 1, alpha 2, and alpha 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of the membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K(+)-ATPase of the alpha 1 beta 1 type and minor amounts of isozymes of the alpha 2 beta 2 (beta 1) and the alpha 3 beta 1 (beta 2) type. The axolemma contains alpha 2 beta 1- and alpha 3 beta 1 isozymes. A carbohydrate analysis indicated that alpha 1 beta 1 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the beta 1 isoform. An enhanced sensitivity of the alpha 3 catalytic subunit of Na+,K(+)-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 decreases Y493 was localized (residue numbering is that of the human alpha 3 subunit). This sequence corresponds to one of the regions of the greatest variability in alpha 1, alpha 2, alpha 3, and alpha 4-subunits, but at the same time, it is characteristic of the alpha 3 isoforms of various species. The presence of the beta 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K(+)-ATPase alpha 3 beta 1 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the alpha 3 catalytic subunit was shown. 相似文献
17.
The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated. 相似文献
18.
19.
The association and dissociation rate constants for the interaction of [3H]-ouabain with partially purified rat brain (Na+,K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in vitro were estimated from the time course of the [3H]-ouabain binding observed in the presence of Na+, Mg2+ and ATP by a polynomial approximation-curve-fitting technique. The reduction of the association rate constant by K+ was greater than its reduction of the dissociation rate constant. Thus, the affinity of Na+,K+)-ATPase for ouabain was reduced by K+. The binding-site concentration was unaffected by K+. Consistent with these findings, the addition of KCl to an incubation mixture at the time when [3H]-ouabain binding to (Na+,K+)ATPase is close to equilibrium, caused an immediate decrease in bound ouabain concentration, apparently shifting towards a new, lower equilibrium concentration. Dissociation rate constants which were estimated following the termination of the ouabain-binding reaction were different from those estimated with above methods and may not be useful in predicting the ligand effects on equilibrium of the ouabain-enzyme interaction. 相似文献
20.
Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase 总被引:12,自引:0,他引:12
J Lytton 《The Journal of biological chemistry》1985,260(18):10075-10080
The K0.5 for intracellular sodium of the two forms of (Na+,K+)-ATPase which exist in rat adipocytes (Lytton, J., Lin, J. C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184) has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na+ pump and allow sodium to equilibrate into the cell. The activity of Na+,K+)-ATPase was then monitored with 86Rb+/K+ pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and 22Na+ tracer equilibration were used to determine the actual intracellular [Na+] under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular [Na+] nor on the Vmax of 86Rb+/K+ pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha (p less than 0.025 versus control) and 33 mM for alpha(+) (p less than 0.005 versus control). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions. Measurement of the K0.5 for sodium ion of (Na+,K+)-ATPase in membranes isolated from adipocytes revealed only a single component of activation with a low K0.5 of 3.5 or 12 mM in the presence of 10 or 100 mM KCl, respectively. Insulin treatment of the isolated membranes or of the cells prior to membrane separation had no effect on these values. 相似文献