首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
The 32-residue leucine zipper subsequence, called here Jun-lz, associates in benign media to form a parallel two-stranded coiled coil. Studies are reported of its thermal unfolding/folding transition by circular dichroism (CD) on samples of natural isotopic abundance and by both equilibrium and spin inversion transfer (SIT) nuclear magnetic resonance (NMR) on samples labeled at the leucine-18 alpha-carbon with 99% 13C. The data cover a wide range of temperature and concentration, and show that Jun-lz unfolds below room temperature, being far less stable than some other leucine zippers such as GCN4. 13C-NMR shows two well-separated resonances. We ascribe the upfield one to 13C spins on unfolded single chains and the downfield one to 13C spins on coiled-coil dimers. Their relative intensities provide a measure of the unfolding equilibrium constant. In SIT NMR, the recovery of the equilibrium magnetization after one resonance is inverted is modulated in part by the unfolding and folding rate constants, which are accessible from the data. Global Bayesian analysis of the equilibrium and SIT NMR data provide values for the standard enthalpy, entropy, and heat capacity of unfolding, and show the latter to be unusually large. The CD results are compatible with the NMR findings. Global Bayesian analysis of the SIT NMR data yields the corresponding activation parameters for unfolding and folding. The results show that both reaction directions are activated processes. Activation for unfolding is entropy driven, enthalpy opposed. Activation for folding is strongly enthalpy opposed and somewhat entropy opposed, falsifying the idea that the barrier for folding is solely due to a purely entropic search for properly registered partners. The activation heat capacity is much larger for folding, so almost the entire overall change is due to the folding direction. This latter finding, if it applies to GCN4 leucine zippers, clears up an extant apparent disagreement between folding rate constants for GCN4 as determined by chevron analysis and NMR in differing temperature regimes.  相似文献   

3.
Dürr E  Jelesarov I 《Biochemistry》2000,39(15):4472-4482
Protein stability in vitro can be influenced either by introduction of mutations or by changes in the chemical composition of the solvent. Recently, we have characterized the thermodynamic stability and the rate of folding of the engineered dimeric leucine zipper A(2), which has a strengthened hydrophobic core [Dürr, E., Jelesarov, I., and Bosshard, H. R. (1999) Biochemistry 38, 870-880]. Here we report on the energetic consequences of a cavity introduced by Leu/Ala substitution at the tightly packed dimeric interface and how addition of 30% glycerol affects the folding thermodynamics of A(2) and the cavity mutants. Folding could be described by a two-state transition from two unfolded monomers to a coiled coil dimer. Removal of six methylene groups by Leu/Ala substitutions destabilized the dimeric coiled coil by 25 kJ mol(-1) at pH 3.5 and 25 degrees C in aqueous buffer. Destabilization was purely entropic at around room temperature and became increasingly enthalpic at elevated temperatures. Mutations were accompanied by a decrease of the unfolding heat capacity by 0.5 kJ K(-1) mol(-1). Addition of 30% glycerol increased the free energy of folding of A(2) and the cavity mutants by 5-10 kJ mol(-1) and lowered the unfolding heat capacity by 25% for A(2) and by 50% for the Leu/Ala mutants. The origin of the stabilizing effect of glycerol varied with temperature. Stabilization of the parent leucine zipper A(2) was enthalpic with an unfavorable entropic component between 0 and 100 degrees C. In the case of cavity mutants, glycerol induced enthalpic stabilization below 50 degrees C and entropic stabilization above 50 degrees C. The effect of glycerol could not be accounted for solely by the enthalpy and entropy of transfer or protein surface from water to glycerol/water mixture. We propose that in the presence of glycerol the folded coiled coil dimer is better packed and displays less intramolecular fluctuations, leading to enhanced enthalpic interactions and to an increase of the entropy of folding. This work demonstrates that mutational and solvent effects on protein stability can be thermodynamically complex and that it may not be sufficient to only analyze changes of enthalpy and entropy at the unfolding temperature (T(m)) to understand the mechanisms of protein stabilization.  相似文献   

4.
Unfolding domains of recombinant fusion alpha alpha-tropomyosin.   总被引:1,自引:1,他引:0       下载免费PDF全文
The thermal unfolding of the coiled-coil alpha-helix of recombinant alpha alpha-tropomyosin from rat striated muscle containing an additional 80-residue peptide of influenza virus NS1 protein at the N-terminus (fusion-tropomyosin) was studied with circular dichroism and fluorescence techniques. Fusion-tropomyosin unfolded in four cooperative transitions: (1) a pretransition starting at 35 degrees C involving the middle of the molecule; (2) a major transition at 46 degrees C involving no more than 36% of the helix from the C-terminus; (3) a major transition at 56 degrees C involving about 46% of the helix from the N-terminus; and (4) a transition from the nonhelical fusion domain at about 70 degrees C. Rabbit skeletal muscle tropomyosin, which lacks the fusion peptide but has the same tropomyosin sequence, does not exhibit the 56 degrees C or 70 degrees C transition. The very stable fusion unfolding domain of fusion-tropomyosin, which appears in electron micrographs as a globular structural domain at one end of the tropomyosin rod, acts as a cross-link to stabilize the adjacent N-terminal domain. The least stable middle of the molecule, when unfolded, acts as a boundary to allow the independent unfolding of the C-terminal domain at 46 degrees C from the stabilized N-terminal unfolding domain at 56 degrees C. Thus, strong localized interchain interactions in coiled-coil molecules can increase the stability of neighboring domains.  相似文献   

5.
6.
The thermal melting of a dicyclic 29-residue peptide, having helix-stabilizing side-chain to side-chain covalent links at each terminal, has been studied by circular dichroism spectropolarimetry (CD) and differential scanning calorimetry (DSC). The CD spectra for this dicyclic peptide indicate that it is monomeric, almost fully alpha-helical at -10 degrees C, and undergoes a reversible transition from the folded to the disordered state with increasing temperature. The temperature dependencies of the ellipticity at 222 nm and the excess heat capacity measured calorimetrically are well fit by a two-state model, which indicates a cooperative melting transition that is complete within the temperature ranges of these experiments (from -10 degrees C to 100 degrees C). This allows a complete analysis of the thermodynamics of helix formation. The helix unfolding is found to proceed with a small positive heat-capacity increment, consistent with the solvation of some non-polar groups upon helix unfolding. It follows that the hydrogen bonds are not the only factors responsible for the formation of the alpha-helix, and that hydrophobic interactions are also playing a role in its stabilization. At 30 degrees C, the calorimetric enthalpy and entropy values are estimated to be 650(+/-50) cal mol(-1)and 2.0(+/-0.2) cal K(-1)mole(-1), respectively, per residue of this peptide. Comparison with the thermodynamic characteristics obtained for the unfolding of double-stranded alpha-helical coiled-coils shows that at that temperature the enthalpic contribution of non-polar groups to the stabilization of the alpha-helix is insignificant and the estimated transition enthalpy can be assigned to the hydrogen bonds. With increasing temperature, the increasing magnitude of the negative enthalpy of hydration of the exposed polar groups should decrease the helix-stabilizing enthalpy of the backbone hydrogen bonds. However, the helix-stabilizing negative entropy of hydration of these groups should also increase in magnitude with increasing temperature, offsetting this effect.  相似文献   

7.
8.
The thermal properties and energetics of formation of 10, 12 and 16 bp DNA duplexes, specifically interacting with the HMG box of Sox-5, have been studied by isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). DSC studies show that the partial heat capacity of these short duplexes increases considerably prior to the cooperative process of strand separation. Direct extrapolation of the pre and post-transition heat capacity functions into the cooperative transition zone suggests that unfolding/dissociation of strands results in no apparent heat capacity increment. In contrast, ITC measurements show that the negative enthalpy of complementary strand association increases in magnitude with temperature rise, implying that strand association proceeds with significant decrease of heat capacity. Furthermore, the ITC-measured enthalpy of strand association is significantly smaller in magnitude than the enthalpy of cooperative unfolding measured by DSC. To resolve this paradox, the heat effects upon heating and cooling of the separate DNA strands have been measured by DSC. This showed that cooling of the strands from 100 degrees C to -10 degrees C proceeds with significant heat release associated with the formation of intra and inter-molecular interactions. When the enthalpy of residual structure in the strands and the temperature dependence of the heat capacity of the duplexes and of their unfolded strands have been taken into account, the ITC and DSC results are brought into agreement. The analysis shows that the considerable increase in heat capacity of the duplexes with temperature rise is due to increasing fluctuations of their structure (e.g. end fraying and twisting) and this effect obscures the heat capacity increment resulting from the cooperative separation of strands, which in fact amounts to 200(+/-40) JK(-1) (mol bp)(-1). Using this heat capacity increment, the averaged standard enthalpy, entropy and Gibbs energy of formation of fully folded duplexes from fully unfolded strands have been determined at 25 degrees C as -33(+/-2) kJ (mol bp)(-1), -93(+/-4) J K(-1) (mol bp)(-1) and -5.0(+/-0.5) kJ (mol bp)(-1), respectively.  相似文献   

9.
The leucine zipper is a dimeric coiled-coil structural motif consisting of four to six heptad repeats, designated (abcdefg)(n). In the GCN4 leucine zipper, a position 16 in the third heptad is occupied by an Asn residue whereas the other a positions are Val residues. Recently, we have constructed variants of the GCN4 leucine zipper in which the a position Val residues were replaced by Ile. The folding and unfolding of the wild-type GCN4 leucine zipper and the Val to Ile variant both adhere to a simple two-state mechanism. In this study, another variant of the GCN4 leucine zipper was constructed by moving the single Asn residue from a position 16 to a position 9. This switch causes the thermal unfolding of the GCN4 leucine zipper to become three state. The unfolding pathway of this variant was determined by thermal denaturation, limited proteinase K digestion, and sedimentation equilibrium analysis. Our data are consistent with a model in which the variant first unfolds from its N terminus and changes the oligomerization specificity from a native dimer to a partially unfolded intermediate containing a mixture of dimers and trimers and then completely unfolds to unstructured monomers.  相似文献   

10.
A J Doig  D H Williams 《Biochemistry》1992,31(39):9371-9375
The changes in free energy, enthalpy, and entropy of unfolding have been measured for many water-soluble, compact, globular proteins by a number of workers. In principle, a wide range in stability could be achieved by proteins, as measured by the free energy of unfolding; in practice, evolution only allows a narrow range in this quantity. Proteins are only marginally stable at room temperature for many possible reasons, including ensuring that folding is reversible and polypeptide chains are not trapped in incorrectly folded structures. Many of these proteins have approximately the same values of enthalpy of unfolding around 110 degrees C. We show here that this arises because the change in entropy of unfolding at room temperature and the change in heat capacity on unfolding, which governs the temperature variation of the enthalpy and entropy, both vary with the magnitude of the hydrophobic effect in the protein. As all these proteins have evolved to achieve similar stabilities at room temperature, the enthalpy of unfolding will also vary with the size of the hydrophobic effect in the protein. A consequence of this is that curves of the specific unfolding enthalpy against temperature for different proteins intersect around 110 degrees C. A similar conclusion, on the basis of similar melting points rather than similar free energies of unfolding, has been reached independently by Baldwin and Muller (R. L. Baldwin, personal communication).  相似文献   

11.
Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.  相似文献   

12.
13.
Natively unfolded proteins range from molten globules to disordered coils. They are abundant in eukaryotic genomes and commonly involved in molecular interactions. The essential N-terminal translocation domains of colicin toxins from Escherichia coli are disordered bacterial proteins that bind at least one protein of the Tol or Ton family. The colicin N translocation domain (ColN-(1-90)), which binds to the C-terminal domain of TolA (TolA-(296-421)), shows a disordered far-UV CD spectrum, no near-UV CD signal, and non-cooperative thermal unfolding. As expected, TolA-(296-421) displays both secondary structure in far-UV CD and tertiary structure in near-UV CD. Furthermore it shows a cooperative unfolding transition at 65 degrees C. CD spectra of the 1:1 complex show both increased secondary structure and colicin N-specific near-UV CD signals. A new cooperative thermal transition at 35 degrees C is followed by the unchanged unfolding behavior of TolA-(296-421). Fluorescence and surface plasmon resonance confirm that the new unfolding transition accompanies dissociation of ColN-(1-90). Hence upon binding the disordered structure of ColN-(1-90) converts to a cooperatively folded domain without altering the TolA-(296-421) structure.  相似文献   

14.
Stefin A folds as a monomer under strongly native conditions. We have observed that under partially denaturing conditions in the temperature range from 74 to 93 degrees C it folds into a dimer, while it is monomeric above the melting temperature of 95 degrees C. Below 74 degrees C the dimer is trapped and it does not dissociate. The dimer is a folded and structured protein as judged by CD and NMR, nevertheless it is no more functional as an inhibitor of cysteine proteases. The monomer-dimer transition proceeds at a slow rate and the activation energy of dimerization at 99 kcal/mol is comparable to the unfolding enthalpy. A large and negative dimerization enthalpy of -111(+/- 8) kcal/mol was calculated from the temperature dependence of the dissociation constant. An irreversible pretransition at 10-15 deg. below the global unfolding temperature has been observed previously by DSC and can now be assigned to the monomer-dimer transition. Backbone resonances of all the dimer residues were assigned using 15N isotopically enriched protein. The dimer is symmetric and the chemical shift differences between the monomer and dimer are localized around the tripartite hydrophobic wedge, which otherwise interacts with cysteine proteases. Hydrogen exchange protection factors of the residues affected by dimer formation are higher in the dimer than in the monomer. The monomer to dimer transition is accompanied by a rapid exchange of all of the amide protons which are protected in the dimer, indicating that the transition state is unfolded to a large extent. Our results demonstrate that the native monomeric state of stefin A is actually metastable but is favored by the kinetics of folding. The substantial energy barrier which separates the monomer from the more stable dimer traps each state under native conditions.  相似文献   

15.
16.
F G Meng  X Zeng  Y K Hong  H M Zhou 《Biochimie》2001,83(10):953-956
The dissociation and unfolding behavior of the GCN4 leucine zipper has been studied using SDS titration. Circular dichroism (CD) spectra showed that the alpha-helix content of the leucine zipper (20 microM) decreased during the sodium dodecyl sulfate (SDS) titration. However, the alpha-helix content of the leucine zipper still remained significant in the presence of 1 mM SDS, with little change detected when the SDS concentration further increased to 2 mM. The dimer dissociation of the leucine zipper is also a co-operative process during SDS titration; with no dimer remaining when SDS concentration reached 1 mM, as shown by electrophoresis and the the theta(222)/theta(208) ratio. Our results indicate that SDS efficiently induces leucine zipper dimer dissociation with the monomers still partially folded. The experimental results provide important evidence for the previous model that partial helix formation precedes dimerization in coiled coil folding.  相似文献   

17.
Sasahara K  Demura M  Nitta K 《Biochemistry》2000,39(21):6475-6482
Equilibrium unfolding of hen egg white lysozyme as a function of GdnCl concentration at pH 0.9 was studied over a temperature range 268.2-303.2 K by means of CD spectroscopy. As monitored by far- and near-UV CD at 222 and 289 nm, the lack of coincidence between two unfolding transition curves was observed, which suggests the existence of a third conformational species in addition to native and unfolded states. The three-state model, in which a stable intermediate is populated, was employed to estimate the thermodynamic parameters for the GdnCl-induced unfolding. It was found that the transition from the native to intermediate states proceeds with significant changes in enthalpy and entropy due to an extremely cooperative process, while the transition from the intermediate to unfolded states shows a low cooperativity with small enthalpy and entropy changes. These results indicate that the highest energy barrier for the GdnCl-induced unfolding of hen lysozyme is located in the process from the native state to the intermediate state, and this process is largely responsible for the cooperativity of protein unfolding.  相似文献   

18.
The energetics of barstar denaturation have been studied by CD and scanning microcalorimetry in an extended range of pH and salt concentration. It was shown that, upon increasing temperature, barstar undergoes a transition to the denatured state that is well approximated by a two-state transition in solutions of high ionic strength. This transition is accompanied by significant heat absorption and an increase in heat capacity. The denaturational heat capacity increment at approximately 75 degrees C was found to be 5.6 +/- 0.3 kJ K-1 mol-1. In all cases, the value of the measured enthalpy of denaturation was notably lower than those observed for other small globular proteins. In order to explain this observation, the relative contributions of hydration and the disruption of internal interactions to the total enthalpy and entropy of unfolding were calculated. The enthalpy and entropy of hydration were found to be in good agreement with those calculated for other proteins, but the enthalpy and entropy of breaking internal interactions were found to be among the lowest for all globular proteins that have been studied. Additionally, the partial specific heat capacity of barstar in the native state was found to be 0.37 +/- 0.03 cal K-1 g-1, which is higher than what is observed for most globular proteins and suggests significant flexibility in the native state. It is known from structural data that barstar undergoes a conformational change upon binding to its natural substrate barnase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Hen egg-white lysozyme, lyophilized from aqueous solutions of different pH (from pH 2.5 to 10.0) and then dissolved in water and in anhydrous glycerol, has been studied by high-sensitivity differential scanning microcalorimetry over the temperature range from 10 to 150 degrees C. All lysozyme samples exhibit a cooperative conformational transition in both solvents occurring between 10 and 100 degrees C. The transition temperatures in glycerol are similar to those in water at the corresponding pHs. The transition enthalpies in glycerol are substantially lower than in water but follow similar pH dependences. The transition heat capacity increment in glycerol does not depend on the pH and is 1.25+/-0.31 kJ mol(-1) K(-1), which is less than one fifth of that in water (6. 72+/-0.23 kJ mol(-1) K(-1)). The thermal transition in glycerol is reversible and equilibrium, as demonstrated for the pH 8.0 sample, and follows the classical two-state mechanism. In contrast to lysozyme in water, the protein dissolved in glycerol undergoes an additional, irreversible cooperative transition with a marginal endothermic heat effect at temperatures of 120-130 degrees C. The transition temperature of this second transition increases with the heating rate which is characteristic of kinetically controlled processes. Thermodynamic analysis of the calorimetric data reveals that the stability of the folded conformation of lysozyme in glycerol is similar to that in water at 20-80 degrees C but exceeds it at lower and higher temperatures. It is hypothesized that the thermal unfolding in glycerol follows the scheme: N ifho-MG-->U, where N is a native-like conformation, ho-MG is a highly ordered molten globule state, and U is the unfolded state of the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号