首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine papillomavirus (BPV) DNA has been reported to restrict its own replication and that of the lytic simian virus 40 (SV40) origin to one initiation event per molecule per S phase, which suggests BPV DNA replication as a model for cellular chromosome replication. Suppression of the SV40 origin required two cis-acting BPV sequences (NCOR-1 and -2) and one trans-acting BPV protein. The results presented in this paper confirm the presence of two NCOR sequences in the BPV genome that can suppress polyomavirus (PyV) as well as SV40 origin-dependent DNA replication as much as 40-fold. However, in contrast to results of previous studies on SV40, most of the suppression of the PyV origin was due to NCOR-1, a 512-bp sequence that functioned independently of distance or orientation with respect to the PyV origin and that was not required for BPV DNA replication. Moreover, NCOR-1 alone or together with NCOR-2 did not restrict the ability of the PyV ori to reinitiate replication within a single S phase and did not require any BPV protein to exert suppression. Furthermore, NCOR-1 did not suppress BPV origin-dependent DNA replication except in the presence of PyV large tumor antigen (T-ag). Since NCOR-1 suppression of PyV origin activity also varied with T-ag concentration, suppression of origins by NCOR sequences appeared to require papovavirus T-ag. Therefore, it is unlikely that NCOR sequences are involved in regulating BPV DNA replication. When these results are taken together with those from other laboratories, BPV appears to be a slowly replicating version of papovaviruses rather than a model for origins of DNA replication in eukaryotic cell chromosomes.  相似文献   

2.
T Chittenden  A Frey    A J Levine 《Journal of virology》1991,65(11):5944-5951
The replication of a simian virus 40 (SV40) origin-containing plasmid, pSLneo, stably transfected COS7 cells has been studied. pSLneo contains the SV40 origin of replication and encodes the positive selectable marker for G418 resistance. In transient replication assays, pSLneo replicates to a high copy number in COS7 cells. Uncontrolled SV40 plasmid replication has been reported to be lethal to such transfected cells. Thus, it was anticipated that extensive plasmid replication would preclude isolation of permanent cell lines containing pSLneo. However, significant number of G418-resistant colonies arose after transfection of COS7 cells with pSLneo. Cell lines established from these drug-resistant colonies contained between 100 and 1,000 extrachromosomal pSLneo copies per cell. Episomal plasmid DNA in pSLneo/COS7 lines was stably maintained after 2 months of continuous culture in selective medium. Bromodeoxyuridine labeling and density shift experiments demonstrated that replication of pSLneo closely paralleled that of cellular DNA. On average, plasmid DNA did not replicate more than once during a single cell generation period. Regulation of pSLneo replication appeared to be negatively controlled by a cis-acting mechanism. Endogenous copies of episomal pSLneo remained at a stable low copy number during the simultaneous, high-level replication of a newly transfected plasmid encoding SV40 large T antigen in the same cells. These results indicate that regulated replication of an SV40 origin plasmid can be acquired in a cell and does not require the presence of additional genetic elements. The molecular mechanism by which cells enforce this regulation on extrachromosomal SV40 plasmids remains to be defined.  相似文献   

3.
Autographica californica multiple nuclear polyhedrosis virus (AcMNPV) has been shown to encode many of the enzymes involved in the replication of its own DNA. Although the AcMNPV genome contains multiple sets of reiterated sequences that are thought to function as origins of DNA replication, no initiator protein has yet been identified in the set of viral replication enzymes. In this study, the ability of a heterologous origin initiator system to promote DNA replication in AcMNPV-infected cells was examined. A recombinant AcMNPV that expressed the simian virus 40 (SV40) large T antigen was surprisingly found to induce the efficient replication of a transfected plasmid containing an SV40 origin. This replication was subsequently found to involve three essential components: (i) T antigen, since replication of SV40 origin-containing plasmids was not induced by wild-type AcMNPV which did not express this protein; (ii) an intact SV40 core origin, since deletion of specific functional motifs within the origin resulted in a loss of replicative abilities; and (iii) one or more AcMNPV-encoded proteins, since viral superinfection was required for plasmid amplification. Characterization of the replicated DNA revealed that it existed as a high-molecular-weight concatemer and underwent significant levels of homologous recombination between inverted repeat sequences. These properties were consistent with an AcMNPV-directed mode of DNA synthesis rather than that of SV40 and suggested that T antigen-SV40 origin complexes may be capable of initiating DNA replication reactions that can be completed by AcMNPV-encoded enzymes.  相似文献   

4.
A hybrid adeno-associated virus (AAV)/simian virus 40 (SV40) genome is described. In this construct SV40 regulatory sequences, including the early promoter/enhancers and origin of DNA replication, were substituted for the AAV p5 promoter, which normally controls expression of the AAV rep gene. The hybrid genome was phenotypically indistinguishable from wild-type AAV in human cells in the presence or absence of helper virus. Upon transfection into cos-7 cells, which constitutively produced the SV40 tumor antigen, the genome replicated as a plasmid when the SV40 origin was used, although with a low efficiency compared with that of a non-AAV/SV40 replicon. The low level of replication was due to an inhibitory effect of an AAV rep gene product and was specific for replicons containing AAV sequences. Target AAV sequences required for inhibition by rep appeared to reside in the terminal repetitions since deletion of these sequences allowed efficient replication in the presence of the rep gene. The possible role for negative autoregulation of AAV DNA replication in latent infection and helper-dependent replication by AAV is discussed.  相似文献   

5.
The association of simian virus 40 (SV40) DNA or plasmid DNA in subcellular fractions from either infected or transfected cells was examined. In lytically infected cells, approx. 25% of viral specific DNA during the infection cycle was retained in nuclei after washing with low ionic strength buffer and 1% Triton X-100. Viral replicating DNA found in the nuclear matrix was capable of performing limited DNA synthesis by the endogenous DNA polymerase in vitro. Viral DNA synthesized in vitro hybridized preferentially to SV40 Hind-III B and C fragments which are in proximity to the origin of replication. In plasmid-transfected COS-7 cells (SV40-transformed cells), the amount of plasmid DNA found in the nuclear matrix was related to its replication efficiency in cells. More than 80% of the plasmid DNA was tightly associated with subnuclear structures. Little or no plasmid DNA was found in the cytoplasmic fraction. The results suggest that, in extrachromosomal model systems, the association of DNA with nuclear matrix is important for the regulation of DNA replication.  相似文献   

6.
An in vitro system to study carcinogen-induced amplification in simian virus 40 (SV40)-transformed Chinese hamster (CO60) cells is described. SV40 amplification in this system resembled in many aspects the viral overreplication observed in drug-treated CO60 cells. Cytosolic extracts from N-methyl-N'-nitro-N-nitrosoguanidine-treated cells supported de novo DNA synthesis in the presence of excess exogenous T antigen and the SV40-containing plasmid pSVK1. The pattern of viral replication in these extracts was unique, since only the 2.4-kilobase-pair region spanning the origin was overreplicated, whereas distal sequences were not replicated significantly. Extracts from control cells supported only marginal levels of replication. In HeLa extracts, complete SV40 DNA molecules were replicated efficiently. The overreplication of the origin region in CO60 cell extracts was bidirectional and symmetrical. A fraction of the newly synthesized DNA molecules underwent a second round of replication, yielding MboI-sensitive fragments representing the 2.4-kilobase-pair region around the origin. The mechanisms controlling the amplification of the viral origin region, the nature of the cellular factors induced in the carcinogen-treated cells, and their putative association with general drug-induced SOS-like responses are discussed.  相似文献   

7.
The T antigen of JC virus (JCV) does not interact productively with the simian virus 40 (SV40) origin of replication. In contrast, the SV40 T antigen does drive replication from the JCV origin as well as from its own. The basis for this restricted interaction was investigated by analyzing the structure of the JCV replication origin. The replication activities of JCV-SV40 hybrid origin plasmids were tested in cells constitutively producing either the JCV or SV40 T antigen. Results indicated that a region of the JCV origin critical for interaction with the JCV T antigen was positioned to the late side of the central palindrome of the putative core origin. A mutational analysis of this region indicated that the sequence of the A + T-rich tract was primarily responsible for determining the efficiency with which JCV can initiate replication from its origin. The tandemly repeated pentameric sequence AGGGA located proximal to the A + T-rich tract in the JCV enhancer element was found to stimulate JCV, but not SV40, T antigen-mediated replication. The effect on replication of other elements within the JCV enhancer was also dependent on the T antigen employed for initiation. A plasmid containing the replication origin of prototype BK virus was unable to replicate in cells containing JCV T antigen, again indicating the inflexibility of the JCV T antigen in interacting with heterologous origins.  相似文献   

8.
J M Roberts  H Weintraub 《Cell》1986,46(5):741-752
To identify DNA sequences that function in the control of DNA replication, we designed a hybrid replicon consisting of linked SV40 and BPV DNA sequences. In the composite SV40-BPV plasmid negative control encoded by BPV is dominant over the uncontrolled replication encoded by the positive factor, SV40 T antigen. Using a transient replication assay, we show that replication control requires three BPV elements. Two cis-acting sequences are closely linked to BPV replication origins. A third trans-acting element is encoded within the 5' part of the BPV E1 open reading frame (ORF) and is separable from the positive replication factor encoded within the 3' part of the same ORF. The controlled replication of SV-BPV composite replicons has enabled us to create permanent COS cell lines that stably maintain these plasmids as episomes.  相似文献   

9.
10.
In vitro initiation of DNA replication in simian virus 40 chromosomes   总被引:15,自引:0,他引:15  
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta.  相似文献   

11.
DNA rearrangements in the form of deletions and duplications are found within and near integrated simian virus 40 (SV40) DNA in nonpermissive cell lines. We have found that rearrangements also occur frequently with integrated pSV2neo plasmid DNA. pSV2neo contains the entire SV40 control region, including the origin of replication, both promoters, and the enhancer sequences. Linearized plasmid DNA was electroporated into X1, an SV40-transformed mouse cell line that expresses SV40 large T antigen (T Ag) and shows very frequent rearrangements at the SV40 locus, and into LMtk-, a spontaneously transformed mouse cell line that contains no SV40 DNA. Stability was analyzed by subcloning G-418-resistant clones and examining specific DNA fragments for alterations in size. Five independent X1 clones containing pSV2neo DNA were unstable at both the neo locus and the T Ag locus. By contrast, four X1 clones containing mutants of pSV2neo with small deletions in the SV40 core origin and three X1 clones containing a different neo plasmid lacking SV40 sequences were stable at the neo locus, although they were still unstable at the T Ag locus. Surprisingly, five independent LMtk- clones containing pSV2neo DNA were unstable at the neo locus. LMtk- clones containing origin deletion mutants were more stable but were not as stable as the X1 clones containing the same plasmid DNA. We conclude that the SV40 origin of replication and early control region are sufficient viral components for the genomic instability at sites of SV40 integration and that SV40 T Ag is not required.  相似文献   

12.
We have increased the copy number of Epstein-Barr virus vectors that also carry the origin of replication of simian virus 40 (SV40) by providing a transient dose of SV40 T antigen. T antigen was supplied in trans by transfection of a nonreplicating plasmid which expresses T antigen into cells carrying Epstein-Barr virus-SV40 vectors. A significant increase in vector copy number occurred over the next few days. We also observed a high frequency of intramolecular recombination when the vector carried a repeat segment in direct orientation, but not when the repeat was in inverted orientation or absent. Furthermore, by following the mutation frequency for a marker on the vector after induction of SV40 replication, it was determined that SV40 replication generates a detectable increase in the deletion frequency but no measurable increase in the frequency of point mutations.  相似文献   

13.
Two mutations were introduced into the wild-type mouse p53 gene by oligonucleotide-directed mutagenesis. These mutations substituted alanine or aspartic acid for serine at position 312, which is constitutively phosphorylated. Phosphopeptide mapping of the mutant proteins, expressed in COS cells, confirmed the loss of phosphorylation at position 312. There were no changes in the ability of the mutant p53s to express the conformation-dependent epitope for monoclonal antibody PAb246 or to participate in complexes with the simian virus 40 (SV40) large T antigen. Replication of a plasmid containing the SV40 origin of replication was inhibited in COS cells by wild-type p53 and both of the phosphorylation site mutants with equal efficiency. A transforming mutant of p53, encoding valine at position 135, did not inhibit SV40 DNA replication in COS cells.  相似文献   

14.
We recently described a soluble cell-free system derived from monkey cells that is capable of replicating exogenous plasmid DNA molecules containing the simian virus 40 (SV40) origin of replication (J.J. Li, and T.J. Kelly, Proc. Natl. Acad. Sci. U.S.A. 81:6973-6977, 1984). Replication in the system is completely dependent upon the addition of the SV40 large T antigen. In this report we describe additional properties of the in vitro replication reaction. Extracts prepared from cells of several nonsimian species were tested for the ability to support origin-dependent replication in the presence of T antigen. The activities of extracts derived from human cell lines HeLa and 293 were approximately the same as those of monkey cell extracts. Chinese hamster ovary cell extracts also supported SV40 DNA replication in vitro, but the extent of replication was approximately 1% of that observed with human or monkey cell extracts. No replication activity was detectable in extracts derived from BALB/3T3 mouse cells. The ability of these extracts to support replication in vitro closely parallels the ability of the same cells to support replication in vivo. We also examined the ability of various DNA molecules containing sequences homologous to the SV40 origin to serve as templates in the cell-free system. Plasmids containing the origins of human papovaviruses BKV and JCV replicated with an efficiency 10 to 20% of that of plasmids containing the SV40 origin. Plasmids containing Alu repeat sequences (BLUR8) did not support detectable DNA replication in vitro. Circular DNA molecules were found to be the best templates for DNA replication in the cell-free system; however, linear DNA molecules containing the SV40 origin also replicated to a significant extent (10 to 20% of circular molecules). Finally, electron microscopy of replication intermediates demonstrated that the initiation of DNA synthesis in vivo takes place at a unique site corresponding to the in vivo origin and that replication is bidirectional. These findings provide further evidence that replication in the cell-free system faithfully mimics SV40 DNA replication in vivo.  相似文献   

15.
W J Tang  W R Folk 《Journal of virology》1989,63(12):5478-5482
Polyomavirus DNA replication is normally restricted to rodent cells, and simian virus 40 (SV40) DNA replication is restricted to primate cells. We demonstrate that DNAs containing the polyomavirus origin can be replicated in monkey cells which constitutively express SV40 large T antigen. Permissivity is most likely caused by SV40 T antigen modification of cellular protein(s) required to replicate the polyomavirus origin. A possible target for the T-antigen-induced modification is DNA polymerase alpha-DNA primase.  相似文献   

16.
17.
18.
19.
The simian virus 40 (SV40)-pBR322 recombinant, pSV2, carrying the origin of SV40 replication and the gpt gene of Escherichia coli, has been stably introduced into Chinese hamster ovary hprt- cells. All gpt-transformed cell lines were found to contain one or more insertions of pSV2 sequences exclusively associated with high-molecular-weight DNA. Additional analyses showed that at least one integrated copy in each cell line retained an intact gpt gene and flanking SV40 sequences required for expression of xanthine-guanine phosphoribosyltransferase. Most cell lines contained pSV2 sequences which had integrated with partial sequence duplication. Upon fusion with COS-1 cells, a simian cell line permissive for autonomous pSV2 replication, most gpt-transformed cell lines produced low-molecular-weight DNA molecules related to pSV2. The majority of these replicating DNAs were indistinguishable from the original transfecting plasmid in both size and restriction enzyme cleavage pattern. In addition, the recovered DNA molecules were able to confer ampicillin resistance to E. coli and to transform mouse L cells and Gpt- E. coli to a Gpt+ phenotype. These studies indicate that all of the genetic information carried by this SV40-plasmid recombinant can be introduced into and retrieved from the genome of mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号