首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. At least two distinct forms of ADPKD are now well defined. In approximately 86% of affected European families, a gene defect localized to 16p13.3 was responsible for ADPKD, while a second locus has been recently localized to 4q13-q23 as candidate for the disease in the remaining families. We present confirmation of linkage to microsatellite markers on chromosome 4q in eight Spanish families with ADPKD, in which the disease was not linked to 16p13.3. By linkage analysis with marker D4S423, a maximum lod score of 9.03 at a recombination fraction of .00 was obtained. Multipoint linkage analysis, as well as a study of recombinant haplotypes, placed the PKD2 locus between D4S1542 and D4S1563, thereby defining a genetic interval of approximately 1 cM. The refined map will serve as a genetic framework for additional genetic and physical mapping of the region and will improve the accuracy of presymptomatic diagnosis of PKD2.  相似文献   

2.
The gene for Batten disease (juvenile-onset neuronal ceroid lipofuscinosis, or Spielmeyer-Sjögren disease), CLN3, maps to 16p11.2-12.1. Four microsatellite markers--D16S288, D16S299, D16S298, and SPN--are in strong linkage disequilibrium with CLN3 in 142 families from 16 different countries. These markers span a candidate region of approximately 2.1 cM. CLN3 is most prevalent in northern European populations and is especially enriched in the isolated Finnish population, with an incidence of 1:21,000. Linkage disequilibrium mapping was applied to further refine the localization of CLN3 in 27 Finnish families by using linkage disequilibrium data and information about the population history of Finland to estimate the distance of the closest markers from CLN3. CLN3 is predicted to lie 8.8 kb (range 6.3-13.8 kb) from D16S298 and 165.4 kb (132.4-218.1 kb) from D16S299. Enrichment of allele "6" at D16S298 (on 96% of Finnish and 92% of European CLN3 chromosomes) provides strong evidence that the same major mutation is responsible for Batten disease in Finland as in most other European countries and that it is therefore not a Finnish mutation. Genealogical studies show that Batten disease is widespread throughout the densely populated regions of Finland. The ancestors of two Finnish patients carrying rare alleles "3" and "5" at D16S298 in heterozygous form originate from the southwestern coast of Finland, and these probably represent other foreign mutations. Analysis of the number and distribution of CLN3 haplotypes from 12 European countries provides evidence that more than one mutation has arisen in Europe.  相似文献   

3.
Evidence for a locus (EJM1) in the HLA region of chromosome 6p predisposing to idiopathic generalized epilepsy (IGE) in the families of patients with juvenile myoclonic epilepsy (JME) has been obtained in two previous studies of separately ascertained groups of kindreds. Linkage analysis has been undertaken in a third set of 25 families including a patient with JME and at least one first-degree relative with IGE. Family members were typed for eight polymorphic loci on chromosome 6p: F13A, D6S89, D6S109, D6S105, D6S10, C4B, DQA1/A2, and TCTE1. Pairwise and multipoint linkage analysis was carried out assuming autosomal dominant and autosomal recessive inheritance and age-dependent high or low penetrance. No significant evidence in favor of linkage was obtained at any locus. Multipoint linkage analysis generated significant exclusion data (lod score < -2.0) at HLA and for a region 10-30 cM telomeric to HLA, the extent of which varied with the level of penetrance assumed. These observations indicate that genetic heterogeneity exists within this epilepsy phenotype.  相似文献   

4.
Hereditary gingival fibromatosis (HGF, MIM 135300; approved gene symbol GINGF) is an oral disease characterized by enlargement of gingiva. Recently, a locus for autosomal dominant HGF has been mapped to an 11-cM region on chromosome 2p21. In the current investigation, we genotyped four Chinese HGF families using polymorphic microsatellite markers on 2p21. The HOMOG test provided evidence for genetic homogeneity, with evidence for linkage in four families (heterogeneity versus homogeneity test HOMOG, χ2 = 0.00). A cumulative maximum two-point lod score of 5.04 was produced with marker D2S390 at a recombination frequency of θ = 0 in the four linked families. Haplotype analysis localized the hereditary gingival fibromatosis locus within the region defined by D2S352 and D2S2163. This region overlaps by 3.8 cM with the previously reported HGF region. Single-strand conformation polymorphism and sequence analysis of the coding region of cytochrome P450 1B1 (CYP1B1) excluded it as a likely candidate gene.  相似文献   

5.
An autosomal recessive form of juvenile Parkinsonism (AR-JP) (MIM 600116) is a levodopa-responsive Parkinsonism whose pathological finding is a highly selective degeneration of dopaminergic neurons in the zona compacta of the substantia nigra. By linkage analysis of diallelic polymorphism of the Mn-superoxide dismutase gene (SOD2), we found a family with AR-JP showing perfect segregation of the disease with the SOD2 locus. By extending the linkage analysis to 13 families with AR-JP, we discovered strong evidence for the localization of the AR-JP gene at chromosome 6q25.2-27, including the SOD2 locus, with the maximal cumulative pairwise LOD scores of 7.26 and 7.71 at D6S305 (theta = .03) and D6S253 (theta = .02), respectively. Observation of obligate recombination events, as well as multipoint linkage analysis, placed the AR-JP gene in a 17-cM interval between D6S437 and D6S264. Delineation of the AR-JP gene will be an important step toward our understanding of the molecular mechanism underlying selective degeneration of the nigral neurons.  相似文献   

6.
Spondyloarthritis (SpA) is a chronic inflammatory disorder with a strong genetic predisposition dominated by the role of HLA-B27. However, the contribution of other genes to the disease susceptibility has been clearly demonstrated. We previously reported significant evidence of linkage of SpA to chromosome 9q31–34. The current study aimed to characterize this locus, named SPA2. First, we performed a fine linkage mapping of SPA2 (24 cM) with 28 microsatellite markers in 149 multiplex families, which allowed us to reduce the area of investigation to an 18 cM (13 Mb) locus delimited by the markers D9S279 and D9S112. Second, we constructed a linkage disequilibrium (LD) map of this region with 1,536 tag single-nucleotide polymorphisms (SNPs) in 136 families (263 patients). The association was assessed using a transmission disequilibrium test. One tag SNP, rs4979459, yielded a significant P-value (4.9×10−5). Third, we performed an extension association study with rs4979459 and 30 surrounding SNPs in LD with it, in 287 families (668 patients), and in a sample of 139 cases and 163 controls. Strong association was observed in both familial and case/control datasets for several SNPs. In the replication study, carried with 8 SNPs in an independent sample of 232 cases and 149 controls, one SNP, rs6478105, yielded a nominal P-value<3×10−2. Pooled case/control study (371 cases and 312 controls) as well as combined analysis of extension and replication data showed very significant association (P<5×10−4) for 6 of the 8 latter markers (rs7849556, rs10817669, rs10759734, rs6478105, rs10982396, and rs10733612). Finally, haplotype association investigations identified a strongly associated haplotype (P<8.8×10−5) consisting of these 6 SNPs and located in the direct vicinity of the TNFSF15 gene. In conclusion, we have identified within the SPA2 locus a haplotype strongly associated with predisposition to SpA which is located near to TNFSF15, one of the major candidate genes in this region.  相似文献   

7.
Manic-depressive illness (MDI), also known as "bipolar affective disorder," is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, we ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping 5 cM from the disease gene, the pedigree sample has > 97% power to detect a dominant allele under genetic homogeneity and has > 73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores < -2.0 at recombination fraction (theta) = .0, 174 DNA loci produced lod scores < -2.0 at theta = .05, and 4 DNA marker loci yielded lod scores > 1 (chromosome 5--D5S39, D5S43, and D5S62; chromosome 11--D11S85). Of the markers giving lod scores > 1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, our linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk.  相似文献   

8.
Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25-q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D10S193, D13S158, and D18S64) previously identified as potential linkages.  相似文献   

9.
Xiao S  Wang X  Qu B  Yang M  Liu G  Bu L  Wang Y  Zhu L  Lei H  Hu L  Zhang X  Liu J  Zhao G  Kong X 《Genomics》2000,68(3):247-252
Hereditary gingival fibromatosis (HGF, MIM 135300; approved gene symbol GINGF) is an oral disease characterized by enlargement of gingiva. Recently, a locus for autosomal dominant HGF has been mapped to an 11-cM region on chromosome 2p21. In the current investigation, we genotyped four Chinese HGF families using polymorphic microsatellite markers on 2p21. The HOMOG test provided evidence for genetic homogeneity, with evidence for linkage in four families (heterogeneity versus homogeneity test HOMOG, chi(2) = 0. 00). A cumulative maximum two-point lod score of 5.04 was produced with marker D2S390 at a recombination frequency of θ = 0 in the four linked families. Haplotype analysis localized the hereditary gingival fibromatosis locus within the region defined by D2S352 and D2S2163. This region overlaps by 3.8 cM with the previously reported HGF region. Single-strand conformation polymorphism and sequence analysis of the coding region of cytochrome P450 1B1 (CYP1B1) excluded it as a likely candidate gene.  相似文献   

10.
Congenital fibrosis of the extraocular muscles (CFEOM) is an autosomal dominant syndrome of congenital external ophthalmoplegia and bilateral ptosis. We previously reported linkage of this disorder in two unrelated families to an 8-cM region near the centromere of human chromosome 12. We now present refinement of linkage in the original two families, linkage analysis of five additional families, and a physical map of the critical region for the CFEOM gene. In each of the seven families the disease gene is linked to the pericentromeric region of chromosome 12. D12S345, D12S59, D12S331, and D12S1048 do not recombine with the disease gene and have combined lod scores of 35.7, 35.6, 16.0, and 31.4, respectively. AFM136xf6 and AFMb320wd9 flank the CFEOM locus, defining a critical region of 3 cM spanning the centromere of chromosome 12. These data support the concept that this may be a genetically homogeneous disorder. We also describe the generation of a YAC contig encompassing the critical region of the CFEOM locus. This interval has been assigned cytogenetically to 12p11.2-q12 and spans the centromere of chromosome 12. These results provide the basis for further molecular analyses of the structure and organization of the CFEOM locus and will help in the identification of candidate genes.  相似文献   

11.
Recently, a new locus (PARK8) for autosomal dominant parkinsonism has been identified in one large Japanese family. Linkage has been shown to a 16-cM centromeric region of chromosome 12, between markers D12S1631 and D12S339. We tested 21 white families with Parkinson disease and an inheritance pattern compatible with autosomal dominant transmission for linkage in this region. Criteria for inclusion were at least three affected individuals in more than one generation. A total of 29 markers were used to saturate the candidate region. One hundred sixty-seven family members were tested (84 affected and 83 unaffected). Under the assumption of heterogeneity and through use of an affecteds-only model, a maximum multipoint LOD score of 2.01 was achieved in the total sample, with an estimated proportion of families with linkage of 0.32. This LOD score is significant for linkage in a replication study and corresponds to a P value of.0047. Two families (family A [German Canadian] and family D [from western Nebraska]) reached significant linkage on their own, with a combined maximum multipoint LOD score of 3.33, calculated with an affecteds-only model (family A: LOD score 1.67, P=.0028; family D: LOD score 1.67, P=.0028). When a penetrance-dependent model was calculated, the combined multipoint LOD score achieved was 3.92 (family A: LOD score 1.68, P=.0027; family D: LOD score 2.24, P=.0007). On the basis of the multipoint analysis for the combined families A and D, the 1-LOD support interval suggests that the most likely disease location is between a CA repeat polymorphism on genomic clone AC025253 (44.5 Mb) and marker D12S1701 (47.7 Mb). Our data provide evidence that the PARK8 locus is responsible for the disease in a subset of families of white ancestry with autosomal dominant parkinsonism, suggesting that it could be a more common locus.  相似文献   

12.
Genomewide linkage studies of type 1 diabetes (or insulin-dependent diabetes mellitus [IDDM]) indicate that several unlinked susceptibility loci can explain the clustering of the disease in families. One such locus has been mapped to chromosome 11q13 (IDDM4). In the present report we have analyzed 707 affected sib pairs, obtaining a peak multipoint maximum LOD score (MLS) of 2.7 (lambda(s)=1.09) with linkage (MLS>=0.7) extending over a 15-cM region. The problem is, therefore, to fine map the locus to permit structural analysis of positional candidate genes. In a two-stage approach, we first scanned the 15-cM linked region for increased or decreased transmission, from heterozygous parents to affected siblings in 340 families, of the three most common alleles of each of 12 microsatellite loci. One of the 36 alleles showed decreased transmission (50% expected, 45.1% observed [P=.02, corrected P=.72]) at marker D11S1917. Analysis of an additional 1,702 families provided further support for negative transmission (48%) of D11S1917 allele 3 to affected offspring and positive transmission (55%) to unaffected siblings (test of heterogeneity P=3x10-4, corrected P=. 01]). A second polymorphic marker, H0570polyA, was isolated from a cosmid clone containing D11S1917, and genotyping of 2,042 families revealed strong linkage disequilibrium between the two markers (15 kb apart), with a specific haplotype, D11S1917*03-H0570polyA*02, showing decreased transmission (46.4%) to affected offspring and increased transmission (56.6%) to unaffected siblings (test of heterogeneity P=1.5x10-6, corrected P=4.3x10-4). These results not only provide sufficient justification for analysis of the gene content of the D11S1917 region for positional candidates but also show that, in the mapping of genes for common multifactorial diseases, analysis of both affected and unaffected siblings is of value and that both predisposing and nonpredisposing alleles should be anticipated.  相似文献   

13.
We have performed linkage analysis in eight families with rod monochromacy, an autosomal recessively inherited condition with complete color blindness. Significant linkage was found with markers located at the pericentromeric region of chromosome 2. A maximum lod score of 5.36 was obtained for marker D2S2333 at θ = 0.00. Mapping of meiotic breakpoints localized the disease gene between markers D2S2187 and D2S2229. Homozygosity for a number of subsequent markers indicating identity by descent was found in two families and provides evidence for a further refinement of the locus proximal to D2S373. This defines an interval of ≈3 cM covering theACHM2locus for rod monochromacy. Radiation hybrid mapping of theCNGA3gene encoding the α-subunit of the cGMP gated cation channel in human cone photoreceptors resulted in a maximum lod score of 16.1 with marker D2S2311 combined with a calculated physical distance of 6.19cR10,000. Screening of the CEPH YAC library and subsequent STS mapping indicated the physical order cen–D2S2222–D2S2175–(D2S2187/D2S2311)–qtel ofmarkers on 2q11 and showed that theCNGA3gene maps most closely to D2S2187 and D2S2311. These data indicate that theCNGA3gene maps within the critical interval of theACHM2locus for rod monochromacy and thus is a candidate gene for this disease.  相似文献   

14.
Familial juvenile nephronophthisis (NPH) is an autosomal recessive kidney disease that leads to end-stage renal failure in adolescence and is associated with the formation of cysts at the cortico-medullary junction of the kidneys. NPH is responsible for about 15% of end-stage renal disease in children, as shown by Kleinknecht and Habib. NPH in combination with autosomal recessive retinitis pigmentosa is known as the Senior-Løken syndrome (SLS) and exhibits renal pathology that is identical to NPH. We had excluded 40% of the human genome from linkage with a disease locus for NPH or SLS when antignac et al. first demonstrated linkage for an NPH locus on chromosome 2. We present confirmation of linkage of an NPH locus to microsatellite markers on chromosome 2 in nine families with NPH. By linkage analysis with marker AFM262xb5 at locus D2S176, a maximum lod score of 5.05 at a θmax = .03 was obtained. In a large NPH family that yielded at D2S176 a maximum lod score of 2.66 at θmax = .0, markers AFM172xc3 and AFM016yc5, representing loci D2S135 and D2S110, respectively, were identified as flanking markers, thereby defining the interval for an NPH locus to a region of approximately 15 cM. Furthermore, the cytogenetic assignment of the NPH region was specified to 2p12-(2q13 or adjacent bands) by calculation of linkage between these flanking markers and markers with known unique cytogenetic assignment. The refined map may serve as a genetic framework for additional genetic and physical mapping of the region.  相似文献   

15.
Nonsyndromic deafness locus (DFNB48) segregating as an autosomal recessive trait has been mapped to the long arm of chromosome 15 in bands q23-q25.1 in five large Pakistani families. The deafness phenotype in one of these five families (PKDF245) is linked to D15S1005 with a lod score of 8.6 at =0, and there is a critical linkage interval of approximately 7 cM on the Marshfield human genetic map, bounded by microsatellite markers D15S216 (70.73 cM) and D15S1041 (77.69 cM). MYO9A, NR2E3, BBS4, and TMC3 are among the candidate genes in the DFNB48 region. The identification of another novel nonsyndromic recessive deafness locus demonstrates the high degree of locus heterogeneity for hearing impairment, particularly in the Pakistani population.  相似文献   

16.
Familial calcium pyrophosphate dihydrate deposition disease (CPPDD) is a disease of articular cartilage that is radiographically characterized by chondrocalcinosis due to the deposition of calcium-containing crystals in affected joints. We have documented the disease in an Argentinean kindred of northern Italian ancestry and in a French kindred from the Alsace region. Both families presented with a common phenotype including early age at onset and deposition of crystals of calcium pyrophosphate dihydrate in a similar pattern of affected joints. Affected family members were karyotypically normal. Linkage to the short arm of chromosome 5 was observed, consistent with a previous report of linkage of the CPPDD phenotype in a large British kindred to the 5p15 region. However, recombinants in the Argentinean kindred have enabled us to designate a region<1 cM in length between the markers D5S416 and D5S2114 as the CPPDD locus.  相似文献   

17.
Linkage analysis in separately ascertained families of probands with juvenile myoclonic epilepsy (JME) has previously provided evidence both for and against the existence of a locus (designated "EJM1"), on chromosome 6p, predisposing to a trait defined as either clinical JME, its associated electroencephalographic abnormality, or idiopathic generalized epilepsy. Linkage analysis was performed in 19 families in which a proband and at least one first- or two second-degree relatives have clinical JME. Family members were typed for seven highly polymorphic microsatellite markers on chromosome 6p: D6S260, D6S276, D6S291, D6S271, D6S465, D6S257, and D6S254. Pairwise and multipoint linkage analysis was carried out under the assumptions of autosomal dominant inheritance at 70% and 50% penetrance and autosomal recessive inheritance at 70% and 50% penetrance. No significant evidence in favor of linkage to the clinical trait of JME was obtained for any locus. The region formally excluded (LOD score < -2) by using multipoint analysis varies depending on the assumptions made concerning inheritance parameters and the proportion of linked families, alpha-that is, the degree of locus heterogeneity. Further analysis either classifying all unaffected individuals as unknown or excluding a subset of four families in which pyknoleptic absence seizures were present in one or more individuals did not alter these conclusions.  相似文献   

18.
Severe combined immunodeficiency disease (SCID) consists of a group of heterogeneous genetic disorders. The most severe phenotype, T-B- SCID, is inherited as an autosomal recessive trait and is characterized by a profound deficiency of both T cell and B cell immunity. There is a uniquely high frequency of T-B- SCID among Athabascan-speaking Native Americans (A-SCID). To localize the A-SCID gene, we conducted a genomewide search, using linkage analysis of approximately 300 microsatellite markers in 14 affected Athabascan-speaking Native American families. We obtained conclusive evidence for linkage of the A-SCID locus to markers on chromosome 10p. The maximum pairwise LOD scores 4.53 and 4.60 were obtained from two adjacent markers, D10S191 and D10S1653, respectively, at a recombination fraction of straight theta=.00. Recombination events placed the gene in an interval of approximately 6.5 cM flanked by D10S1664 and D10S674. Multipoint analysis positioned the gene for the A-SCID phenotype between D10S191 and D10S1653, with a peak LOD score of 5.10 at D10S191. Strong linkage disequilibrium was found in five linked markers spanning approximately 6.5 cM in the candidate region, suggesting a founder effect with an ancestral mutation that occurred sometime before 1300 A.D.  相似文献   

19.
Synesthesia, a neurological condition affecting between 0.05%–1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception.  相似文献   

20.
Lethal congenital contracture syndrome (LCCS) is an autosomal recessive disease leading to death before the 32d gestational week. It is characterized by the fetal akinesia phenotype, with highly focused degeneration of motoneurons in the spinal cord as the main neuropathological finding. We report here the assignment of the LCCS locus to a defined region of chromosome 9q34, between markers D9S1825 and D9S1830. The initial genome scan was performed with the DNA samples of only five affected individuals from two unrelated LCCS families. The conventional linkage analysis performed with 20 affected individuals and their families was focused on those chromosomal regions in which the affected siblings were identical by descent in the initial scan. One core haplotype of 3 cM was observed in LCCS alleles, supporting the assumption of one major mutation underlying LCCS, and linkage disequilibrium analysis restricted the critical chromosomal region to <100 kb in the vicinity of marker D9S61. Two genes, NGAL (neutrophil gelatinase-associated lipocalin and NOTCH 1, were excluded as causative genes for LCCS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号