首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive exposure to sunlight is primarily implicated in ultraviolet (UV) induced skin cancers worldwide. Direct absorption of UV radiation by DNA leads to the formation of cyclobutane pyrimidine dimers (CPDs) resulting in DNA damage. The molecular mechanisms involved in the mutagenicity of CPDs are well established. Photoprotection of the skin from the detrimental effects of UV is essential in preventing skin damage. A variety of formulations, which essentially contain UV filters have been used as photoprotective agents of the skin. These comprise aromatic and inorganic molecules, whose mechanism of action involves either absorption, reflection, or scattering of UV radiation. However, the downstream photoproducts of some of these molecules have undesirable characteristics which compromise their utility. A biomimetic approach involving structural analogs of nucleic acids can help overcome these limitations. Herein, we show the photoprotective action of acyclothymidine dinucleosides on both plasmid and cellular DNA.  相似文献   

2.
3.
UV skin exposure induces extensive generation of reactive oxygen species (ROS). These can react with DNA, proteins, fatty acids and saccharides causing oxidative damage. Such injuries result in a number of harmful effects: disturbed cell metabolism, morphological and ultrastructural changes, attack on the regulation pathways and, alterations in the differentiation, proliferation and apoptosis of skin cells. These processes can lead to photoaging and skin cancer development. One approach to protecting human skin against the harmful effects of UV irradiation is to use antioxidants as photoprotectives. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. In this review, we strive to summarize the findings of studies performed to date, regarding the photoprotective effects of plant phenolics on the skin damage induced by UV radiation.  相似文献   

4.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long‐term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV‐induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self‐renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   

5.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long-term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV-induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self-renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   

6.
Exposure to solar ultraviolet radiation (UV) is the main etiological factor for skin cancer, including melanoma. Cutaneous pigmentation, particularly eumelanin, afforded by melanocytes is the main photoprotective mechanism, as it prevents UV-induced DNA damage in the epidermis. Therefore, maintaining genomic stability of melanocytes is crucial for prevention of melanoma, as well as keratinocyte-derived basal and squamous cell carcinoma. A critical independent factor for preventing melanoma is DNA repair capacity. The response of melanocytes to UV is mediated mainly by a network of paracrine factors that not only activate melanogenesis, but also DNA repair, anti-oxidant, and survival pathways that are pivotal for maintenance of genomic stability and prevention of malignant transformation or apoptosis. However, little is known about the stress response of melanocytes to UV and the regulation of DNA repair pathways in melanocytes. Unraveling these mechanisms might lead to strategies to prevent melanoma, as well as non-melanoma skin cancer.  相似文献   

7.
Epidemiological and experimental evidences have established solar ultraviolet (UV) radiation as the leading cause of skin cancers. Specifically, the frequency of non-melanoma skin cancer, one of the malignancies with the most rapidly increasing incidence, is directly related to the total exposure to solar UV light. As part of a general effort to elucidate the components of cellular signal transduction pathways, the mechanisms of cellular responses to UV radiation have received considerable attention over the last few years. These efforts were driven mainly by the conviction that understanding how normal cells respond to extracellular stimuli such as exposure to UV radiation will undoubtedly help in deciphering what goes wrong in a variety of clinical disorders including skin cancers and will assist in the development of novel therapeutic strategies. Studies over the last decade have established that UV radiation induces a bewildering array of signal transduction pathways, some of which could lead to apoptotic cell death. UV-induced cell death by apoptosis is considered to be a natural protective mechanism that removes damaged keratinocytes and circumvents the risk of malignant transformation. In this review, we summarize some of the most important findings regarding the response and role of mitogen-activated protein kinases in UVA and UVB radiation-induced signaling to apoptosis in keratinocytes. We will also briefly discuss what is known about the role of the BCL-2 family of proteins, the emerging role of lysosomal proteases and other important cytosolic signaling proteins in UV-induced apoptosis.  相似文献   

8.
Ultraviolet A (UVA) radiation represents more than 90% of the solar UV radiation reaching Earth's surface. Exposure to solar UV radiation is a major risk in the occurrence of non-melanoma skin cancer. Whole genome sequencing data of melanoma tumors recently obtained makes it possible also to definitively associate malignant melanoma with sunlight exposure. Even though UVB has long been established as the major cause of skin cancer, the relative contribution of UVA is still unclear. In this review, we first report on the formation of DNA damage induced by UVA radiation, and on recent advances on the associated mechanism. We then discuss the controversial data on the UVA-induced mutational events obtained for various types of eukaryotic cells, including human skin cells. This may help unravel the role of UVA in the various steps of photocarcinogenesis. The connection to photocarcinogenesis is more extensively discussed by other authors in this issue.  相似文献   

9.
Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.  相似文献   

10.
The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection.  相似文献   

11.
The incidence of skin cancers such as non-melanoma skin cancer and malignant melanoma has increased in the last few years mainly because of chronic exposure to ultraviolet (UV) radiation. Sunscreens protect the skin against harmful UV radiations; however, some limitations of these products justify the discovery of new UV filters. Novel 1,3,5-triazine derivatives (12a-h) obtained by the optimization of prototype resveratrol were synthesized and characterized. All compounds exhibited sun protection factor (SPF) and UVA protection factor (UVAPF) in the range of 3–17 and 3–13, respectively. These values were superior to resveratrol and the UV filter ethylhexyl triazone (EHT) currently available on the market. In addition, all compounds demonstrated in vitro antioxidant activity and thermal stability with the decomposition at temperatures above 236 °C. In conclusion, the novel 1,3,5-triazine derivatives have emerged as new UV filters with antioxidant effect useful to prevent skin cancer.  相似文献   

12.
Epidemiological and experimental evidence has supported the notion that solar ultraviolet (UV) radiation is the leading cause of skin cell damage and skin cancer. Non‐melanoma skin cancer, one of the malignancies with the most rapidly increasing incidence, is suggested to be directly related to the total exposure to solar UV light. Over the past few years, the mechanisms of cellular responses to UV radiation have received unprecedented attention. Understanding how skin cells respond to UV radiation will undoubtedly help decipher what goes wrong in a variety of clinical skin disorders including skin cancer and will facilitate the development of novel therapeutic strategies. In the past decade, studies have established that UV radiation induces multifarious signal transduction pathways, some of which lead to apoptotic cell death, while others protect against this process. In this review, we summarize some of the most recent progresses regarding the involvement of multiple signal pathways in UV radiation‐induced apoptosis in skin cells, especially in keratinocytes. These pathways include pro‐apoptosis components such as MAPK, AMPK, and p53 as well as pro‐survival components, namely, AKT and mTORC complexes. J. Cell. Physiol. 220: 277–284, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis.  相似文献   

14.
Chemoprevention can be defined as the use of specific natural or synthetic chemical agents to reverse, suppress, or prevent carcinogenic progression to invasive cancer. The knowledge of carcinogenic mechanisms provides the scientific rationale for chemoprevention. Epithelial carcinogenesis proceeds through multiple discernible stages of molecular and cellular alterations. Understanding of the multistep nature of carcinogenesis has evolved through highly controlled animal carcinogenesis studies, and these studies have identified three distinct phases: initiation, promotion and progression. Animal model studies have provided evidence that the development of cancer involves many different factors, including alterations in the structures and functions of different genes. Transitions between successive stages can be enhanced or inhibited in the laboratory by different types of agents, such activities providing the fundamental basis for chemoprevention.  相似文献   

15.
The sunlight was one of the first agents recognized to be carcinogenic for humans. There is convincing evidence from epidemiologic studies that exposure to solar radiation is the major cause of cutaneous melanoma in light-pigmented populations and plays a role in the increasing incidence of this malignancy. The molecular mechanisms by which UV radiation exerts its varied effects are not completely understood, however, it is considered that UVA and UVB are equally critical players in melanoma formation. Whereas UVA can indirectly damage DNA through the formation of reactive oxygen radicals, UVB can directly damage DNA causing the apoptosis of keratinocytes by forming the sunburn cells. Besides action through mutations in critical regulatory genes, UV radiation may promote cancer through indirect mechanisms, e.g. immunosuppression and dysregulation of growth factors. The carcinogenic process probably involves multiple sequential steps, some, but not all of which involve alterations in DNA structure.  相似文献   

16.
Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation as a tumor initiator, tumor promoter and complete carcinogen, and their excessive exposure can lead to the development of various skin disorders including melanoma and nonmelanoma skin cancers. Sunscreens are useful, but their protection is not adequate to prevent the risk of UV-induced skin cancer. It may be because of inadequate use, incomplete spectral protection and toxicity. Therefore new chemopreventive methods are necessary to protect the skin from photodamaging effects of solar UV radiation. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of skin carcinogenesis. In recent years, considerable interest has been focused on identifying naturally occurring botanicals, specifically dietary, for the prevention of photocarcinogenesis. A wide variety of botanicals, mostly dietary flavonoids or phenolic substances, have been reported to possess substantial anticarcinogenic and antimutagenic activities because of their antioxidant and antiinflammatory properties. This review summarizes chemopreventive effects of some selected botanicals, such as apigenin, curcumin, grape seed proanthocyanidins, resveratrol, silymarin, and green tea polyphenols, against photocarcinogenesis in in vitro and in vivo systems. Attention has also been focused on highlighting the mechanism of chemopreventive action of these dietary botanicals. We suggest that in addition to the use of these botanicals as dietary supplements for the protection of photocarcinogenesis, these botanicals may favorably supplement sunscreens protection and may provide additional antiphotocarcinogenic protection including the protection against other skin disorders caused by solar UV radiation.  相似文献   

17.
Surface ultraviolet (UV) radiation plays an important role in human health. Increased exposure to UV radiation increases the risk of skin cancer. In Australia, public campaigns to prevent skin cancer include the promotion of daily UV forecasts. If all other atmospheric factors are equal, stratospheric ozone decreases result in UV increases. Given that Australia still has the highest skin cancer rates in the world, it is important to monitor Australia’s stratospheric ozone and UV radiation levels over time because of the effects cumulative exposure can have on humans. In this paper, two long-term ozone datasets derived from surface and satellite measurements, a radiation code and atmospheric meteorological fields are used to calculate clear-sky UV radiation over a 50-year period (1959–2009) for Australia. The deviations from 1970–1980 levels show that clear-sky UV is on the rise. After the 1990s, an overall annual increase from 2 to 6% above the 1970–1980 levels was observed at all latitudes. Examining the summer and winter deviations from 1970–1980 showed that the winter signal dominated the annual changes, with winter increases almost twice those in summer. With ozone levels not expected to recover to pre-depletion levels until the middle of this century, UV levels are expected to continue to rise. Combined with Australians favoring an outdoor life-style, when temperatures are warmer, under high levels of UV, the associated risk of skin cancer will increase.  相似文献   

18.
Halliday GM 《Mutation research》2005,571(1-2):107-120
Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.  相似文献   

19.
Recent studies have demonstrated that cells exposed to ionizing radiation or alkylating agents can develop prolonged genetic instability. Induced genetic instability is manisested in multiple ways, including delayed reproductive death, an increased rate of point mutations, and an increased rate of chromosome rearrangements. In many respects these changes are similar to the genetic instability associated with cancer and some human genetic diseases. Therefore, as with cancer cells, multiple mechanisms may be involved, some occuring in the early stages and some in the later stages. The high percentage of cells that develop induced genetic instability after exposure to stress, and the prolonged period over which the instability occurs, indicates that the instability is not in response to residual damage in the DNA or mutations in specific genes. Instead, changes affecting most of the exposed cells, such as epigenetic alterations in gene expression or chain reactions of chromosome rearrangements, are a more likely explanation. Learning more about the mechanisms involved in this process is essential for understanding the consequences of exposure of cells to ionizing radiation or alkylating agents.  相似文献   

20.
A perspective on keratinocyte stem cells as targets for skin carcinogenesis   总被引:2,自引:0,他引:2  
Skin cancers as seen in the clinic are the result of a long history of events of which only the final stages are easily observed. As normal cells progress to the neoplastic and later metastatic stages, multiple changes in gene expression and cellular phenotypes occur. Nevertheless, the early events in the pathway leading from the first exposure to carcinogenic or mutagenic agents to a frank tumor are thought to involve a two-step process of tumor initiation and tumor promotion. In experimental two-stage skin carcinogenesis in mice, benign and malignant neoplasms can be induced on the backs of mice following a low, or sub-threshold, exposure to a carcinogen (initiation) and subsequent chronic regenerative epidermal hyperplasia caused by a variety of physical, chemical, or biological agents (promotion). Tumor initiation is thought to involve conversion of some of the epidermal cells into latent neoplastic cells, whereas promotion elicits expression of the neoplastic change. Many questions remain about this process, in particular the identity and biological properties of the cells that are specifically the targets of tumor initiation and promotion. Conceivably, any proliferative cell could become and remain initiated; however, these rare cells in the cutaneous epithelium able to become neoplastic cells after exposure to carcinogens and tumor promoters have many of the properties of stem cells. Although this concept that stem cells are the target cells in the development of cancer is not new, I will consider here the evidence that the target cells are indeed stem cells in the cutaneous epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号