首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cladistic analysis of nuclear-encoded rRNA sequence data provided us with the basis for some new hypotheses of relationships within the green algal class Ulvophyceae. The orders Ulotrichales and Ulvales are separated from the clade formed by the remaining orders of siphonous and siphonocladous Ulvophyceae (Caulerpales, Siphonocladales /Cladophorales [S/C] complex, and the Dasycladales), by the Chlorophyceae and Pleurastrophyceae. Our results suggest that the Ulvophyceae is not a monophyletic group. Examination of inter- and intra-ordinal relationships within the siphonous and siphonocladous ulvophycean algae revealed that Cladophora, Chaetomorpha, Anadyomene, Microdictyon, Cladophoropsis and Dictyosphaeria form a clade. Thus the hypothesis, based on ultrastructural features, that the Siphonocladales and Cladophorales are closely related is supported. Also, the Caulerpales is a monophyletic group with two lineages; Caulerpa, Halimeda, and Udotea comprise one, and Bryopsis and Codium comprise the other. The Dasycladales (Cymopolia and Batophora) also forms a clade, but this clade is not inferred to be the sister group to the S/C complex as has been proposed. Instead, it is either the sister taxon to the Caulerpales or basal to the Caulerpales and S/C clade The Trentepohliales is also included at the base of the siphonous and siphonocladous ulvophycean clade. The Pleurastrophyceae, which, like the Ulvophyceae, posses a counter-clockwise arrangement of flagellar basal bodies, are more closely related to the Chlorophyceae than to the Ulvophyceae based on rRNA sequences. Thus, the arrangement of basal bodies does not diagnose a monophyletic group. Previously reported hypotheses of phylogenetic relationships of ulvophycean algae were tested. In each case, additional evolutionary steps were required to obtain the proposed relationships. Relationships of ulvophycean algae to other classes of green algae are discussed.  相似文献   

2.

Background  

EFL (or elongation factor-like) is a member of the translation superfamily of GTPase proteins. It is restricted to eukaryotes, where it is found in a punctate distribution that is almost mutually exclusive with elongation factor-1 alpha (EF-1α). EF-1α is a core translation factor previously thought to be essential in eukaryotes, so its relationship to EFL has prompted the suggestion that EFL has spread by horizontal or lateral gene transfer (HGT or LGT) and replaced EF-1α multiple times. Among green algae, trebouxiophyceans and chlorophyceans have EFL, but the ulvophycean Acetabularia and the sister group to green algae, land plants, have EF-1α. This distribution singles out green algae as a particularly promising group to understand the origin of EFL and the effects of its presence on EF-1α.  相似文献   

3.

Background  

A non-canonical nuclear genetic code, in which TAG and TAA have been reassigned from stop codons to glutamine, has evolved independently in several eukaryotic lineages, including the ulvophycean green algal orders Dasycladales and Cladophorales. To study the phylogenetic distribution of the standard and non-canonical genetic codes, we generated sequence data of a representative set of ulvophycean green algae and used a robust green algal phylogeny to evaluate different evolutionary scenarios that may account for the origin of the non-canonical code.  相似文献   

4.
Photosystem II light-harvesting complexes were isolated from a number of ulvophycean algae. Some of these light-harvesting complexes displayed unusual features, most notably a high apparent molecular weight (ca. 58,000) when isolated by lithium doderyl sulfate polyarrylamide gel electrophoresis. Other ulvophycean light-harvesting complexes had a low-molecular weight (ca. 30,000). The distribution of the high-molecular weight complex was limited to certain members of the Caulerpales and Blastophysa rhizopus (Siphanocladales). Within the Caulerpales, there were also spectral differences between the high-molecular weight and low-molecular weight light-harvesting complex types. The differences in light-harvesting complexes in the Ulvophyceae suggest that there are two lines of evolution in the Caulerpales and that Blastophysa may be an intermediate between the Siphon-ocladales and the Caulerpales.  相似文献   

5.
The universal genetic code is conserved throughout most living systems, but a non-canonical code where TAA and TAG encode glutamine has evolved in several eukaryotes, including oxymonad protists. Most oxymonads are uncultivable, so environmental RT-PCR and PCR was used to examine the distribution of this rare character. A total of 253 unique isolates of four protein-coding genes were sampled from the hindgut community of the cockroach, Cryptocercus punctulatus , an environment rich in diversity from two of the five subgroups of oxymonad, saccinobaculids and polymastigids. Four α-tubulins were found with non-canonical glutamine codons. Environmental RACE confirmed that these and related genes used only TGA as stop codons, as expected for the non-canonical code, whereas other genes used TAA or TAG as stop codons, as expected for the universal code. We characterized α-tubulin from manually isolated Saccinobaculus ambloaxostylus , confirming it uses the universal code and suggesting, by elimination, that the non-canonical code is used by a polymastigid. HSP90 and EF-1α phylogenies also showed environmental sequences falling into two distinct groups, and are generally consistent with previous hypotheses that polymastigids and Streblomastix are closely related. Overall, we propose that the non-canonical genetic code arose once in a common ancestor of Streblomastix and a subgroup of polymastigids.  相似文献   

6.
Aspects of the reproduction of Bolbocoleon piliferum N. Pringsheim, a common, small, filamentous, endophytic marine green alga, were examined by LM and TEM. These observations were combined with phylogenetic analysis of nuclear‐encoded small subunit rRNA gene sequences to assess the phylogenetic position of B. piliferum. Quadriflagellate zoospores and planozygotes derived from fusion of isogametes yielded plants with identical morphology. Zoosporangia and gametangia divided by sequential cleavages. Plugs at the apices of zoosporangia and gametangia formed during development; tubes were found at zoosporangial and gametangial apices after swarmer release. Flagellar apparatuses of zoospores and gametes were similar to those of algae in the Ulvales (Ulvophyceae), except that terminal caps were entire rather than bilobed and rhizoplasts and “stacked” microtubular root configurations were absent. Structures associated with planozygotes were identical to those observed in other algae currently assigned to Ulotrichales and Ulvales. Molecular phylogenetic analyses placed B. piliferum within the Ulvophyceae, at the base of a clade that contains representatives of the families Ulvaceae, Ulvellaceae, and Kornmanniaceae. The results support an earlier hypothesis that B. piliferum constitutes a distinct lineage. Analyses including Kornmanniaceae recover monophyletic Ulotrichales and Ulvales, whereas analyses omitting the Kornmanniaceae indicate that Ulotrichales is paraphyletic. The structures associated with gamete fusion are conserved within Ulotrichales and Ulvales and perhaps more widely within Chlorophyta.  相似文献   

7.
We have examined the motile cell ultrastructural features of several green algal species having filamentous or foliose thallus morphology and probable affinities with the Ulvophyceae, and compared them with the structural, reproductive, and life history features known for these taxa. We separate the algae studied into the orders Ulotrichales and Ulvales on the basis of consistent variations in terminal cap and proximal sheath structure that correlate well with life history patterns and certain features of sporangial and gametangial structure and development. Body scales are present only in certain members of the Ulotrichales. Both orders encompass a variety of thallus forms, demonstrating parallel evolution of thallus morphology. Flagellar apparatus features common to all the motile cells examined include 180° rotational symmetry, counterclockwise absolute orientation, the positioning of the basal bodies in an apical papilla, and the presence of one or more sets of striated bands associated with the X rootlets. Additional features that are usually present include basal body overlap and orientation roughly perpendicular to the long axis of the cell during forward swimming, striated distal fibers, and a single, striated, microtuble-associated component underlying each two-membered rootlet. These similarities indicate to us that the two groups are closely related members of the Ulvophyceae. We suggest that the Ulotrichales is the most primitive ulvophyceous assemblage known, but that all groups studied have advanced features relative to those supposed to have been present in the ancestral members of the Ulvophyceae.  相似文献   

8.
The overall appearance of the flagellar apparatus in the isogametes of Batophora oerstedii. J. Ag. is most like that which occurs in motile cells of the Ulvophyceae. Like other Ulvophyceae, the basal bodies overlap and are arranged in the 11/5 configuration, microtubular roots are arranged in a cruciate pattern and system II striated fibers are present. The basal body connective which generally lacks striation in the Ulvophyceae is clearly different in Batophora, being composed of two large non-striated halves which connect to the anterior surface of each basal body and are then connected to one another by a distinctly fibrous centrally striated region. This variation in the basal body connective and the presence of two posteriorly directed system II striated fibers is clearly different from homologous structures reported in siphonous green algae of the Caulerpales. Based upon these variations and similarities among flagellar apparatus components in siphonous green algae, it is suggested that the Dasycladales and Siphonodadales are more closely related to one another than to the Caulerpales.  相似文献   

9.
In traditional chlorophytan systems the organizational level was the primary character for the distinction of main groups (classes and orders). For instance, in Fott (1971), the flagellate level corresponds with the Volvocales, the coccoid level with the Chlorococcales, the filamentous level with the Ulotrichales, the siphonocladous level with the Siphonocladales, and the siphonous level with the Bryopsidales. The new system presented here is an elaboration and emendation of recently proposed taxonomies and their underlying phylogenetic hypotheses, and it is mainly based on ultrastructural features which have become available over the last 15 years. The following criteria are used for the distinction of classes and orders: (1) architecture of the flagellate cell (flagellate cells are considered as the depositories of primitive characters); (2) type of mitosis-cytokinesis; (3) place of meiosis in the life history and, consequently, the sexual life history type; (4) organizational level and thallus architecture; (5) habitat type (marine versus feshwater and terrestrial); (6) chloroplast type. The following classes are presented: Prasinophyceae, Chlamydophyceae, Ulvophyceae (orders Codiolales, Ulvales, Cladophorales, Bryopsidales, Dasycladales), Pleurastrophyceae (?), Chlorophyceae s.s. (orders Cylindrocapsales, Oedogoniales, Chaetophorales), Zygnematophyceae, Trentepohliophyceae, Charophyceae (orders Klebsormidiales, Coleochaetales, Charales). The new system no longer reflects the traditional hypothesis of a stepwise evolutionary progression of organizational levels in which the flagellate level represents the most primitive lineage, the coccoid and sarcinoid levels lineages of intermediate derivation, and the filamentous, siphonocladous and siphonous levels the most derived lineages. Instead, it is now hypothesized that these levels have arisen over and over again in different chlorophytan lineages which are primarily characterized by their type of flagellate cell. The flagellate green algal classes Prasinophyceae (with organic body scales) and Chlamydophyceae probably represent bundles of highly conservative lineages that diverged very long ago. Consequently, extant genera and species in these classes can be expected to have emerged long ago. Fossil evidence points to a minimum age of 600 Ma of certain extant Prasinophycean genera, and molecular evidence to a minimum age of 400–500 Ma of a fewChlamydomonas species. On the contrary, the most derived “green algal” lineage, the Angiosperms, can be expected to consist of, on average, much younger genera and species. Fossil evidence points to a minimum age of genera of 5–60 Ma. Lineages of intermediate evolutionary derivation (Ulvophyceae, Chlorophyceae, Charophyceae) can be expected to encompass genera and species of intermediate age. Fossil and (limited) molecular evidence point to a minimum age of 230–70 Ma of extant genera in Bryopsidales, Dasycladales and Cladophorales (Ulvophyceae) and of 250–80 Ma of extant genera in Charales (Charophyceae).  相似文献   

10.
11.
Gile GH  Patron NJ  Keeling PJ 《Protist》2006,157(4):435-444
EFL (EF-like protein) is a member of the GTPase superfamily that includes several translation factors. Because it has only been found in a few eukaryotic lineages and its presence correlates with the absence of the related core translation factor EF-1alpha, its distribution is hypothesized to be the result of lateral gene transfer and replacement of EF-1alpha. In one supergroup of eukaryotes, the chromalveolates, two major lineages were found to contain EFL (dinoflagellates and haptophytes), while the others encode EF-1alpha (apicomplexans, ciliates, heterokonts and cryptomonads). For each of these groups, this distribution was deduced from whole genome sequence or expressed sequence tag (EST) data from several species, with the exception of cryptomonads from which only a single EF-1alpha PCR product from one species was known. By sequencing ESTs from two cryptomonads, Guillardia theta and Rhodomonas salina, and searching for all GTPase translation factors, we revealed that EFL is present in both species, but, contrary to expectations, we found EF-1alpha in neither. On balance, we suggest the previously reported EF-1alpha from Rhodomonas salina is likely an artefact of contamination. We also identified EFL in EST data from two members of the dinoflagellate lineage, Karlodinium micrum and Oxyrrhis marina, and from an ongoing genomic sequence project from a third, Perkinsus marinus. Karlodinium micrum is a symbiotic pairing of two lineages that would have both had EFL (a dinoflagellate and a haptophyte), but only the dinoflagellate gene remains. Oxyrrhis marina and Perkinsus marinus are early diverging sister-groups to dinoflagellates, and together show that EFL originated early in this lineage. Phylogenetic analysis confirmed that these genes are all EFL homologues, and showed that cryptomonad genes are not detectably related to EFL from other chromalveolates, which collectively form several distinct groups. The known distribution of EFL now includes a third group of chromalveolates, cryptomonads. Of the six major subgroups of chromalveolates, EFL is found in half and EF-1alpha in the other half, and none as yet unambiguously possess both genes. Phylogenetic analysis indicates EFL likely arose early within each subgroup where it is found, but suggests it may have originated multiple times within chromalveolates as a whole.  相似文献   

12.
Elongation factor 1α (EF-1α) and elongation factor-like (EFL) proteins are considered to carry out equivalent functions in translation in eukaryotic cells. Elongation factor 1α and EFL genes are patchily distributed in the global eukaryotic tree, suggesting that the evolution of these elongation factors cannot be reconciled without multiple lateral gene transfer and/or ancestral co-occurrence followed by differential loss of either of the two factors. Our current understanding of the EF-1α/EFL evolution in the eukaryotic group Rhizaria, composed of Foraminifera, Radiolaria, Filosa, and Endomyxa, remains insufficient, as no information on EF-1α/EFL gene is available for any members of Radiolaria. In this study, EFL genes were experimentally isolated from four polycystine radiolarians (i.e. Dictyocoryne, Eucyrtidium, Collozoum, and Sphaerozoum), as well as retrieved from publicly accessible expressed sequence tag data of two acantharean radiolarians (i.e. Astrolonche and Phyllostaurus) and the endomyxan Gromia. The EFL homologs from radiolarians, foraminiferans, and Gromia formed a robust clade in both maximum-likelihood and Bayesian phylogenetic analyses, suggesting that EFL genes were vertically inherited from their common ancestor. We propose an updated model for EF-1α/EFL evolution in Rhizaria by incorporating new EFL data obtained in this study.  相似文献   

13.
The genetic code is one of the most highly conserved characters in living organisms. Only a small number of genomes have evolved slight variations on the code, and these non-canonical codes are instrumental in understanding the selective pressures maintaining the code. Here, we describe a new case of a non-canonical genetic code from the oxymonad flagellate Streblomastix strix. We have sequenced four protein-coding genes from S.strix and found that the canonical stop codons TAA and TAG encode the amino acid glutamine. These codons are retained in S.strix mRNAs, and the legitimate termination codons of all genes examined were found to be TGA, supporting the prediction that this should be the only true stop codon in this genome. Only four other lineages of eukaryotes are known to have evolved non-canonical nuclear genetic codes, and our phylogenetic analyses of alpha-tubulin, beta-tubulin, elongation factor-1 alpha (EF-1 alpha), heat-shock protein 90 (HSP90), and small subunit rRNA all confirm that the variant code in S.strix evolved independently of any other known variant. The independent origin of each of these codes is particularly interesting because the code found in S.strix, where TAA and TAG encode glutamine, has evolved in three of the four other nuclear lineages with variant codes, but this code has never evolved in a prokaryote or a prokaryote-derived organelle. The distribution of non-canonical codes is probably the result of a combination of differences in translation termination, tRNAs, and tRNA synthetases, such that the eukaryotic machinery preferentially allows changes involving TAA and TAG.  相似文献   

14.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

15.
Elongation factor 1α (EF-1α) and elongation factor-like protein (EFL) are considered to be functionally equivalent proteins involved in peptide synthesis. Eukaryotes can be fundamentally divided into ‘EF-1α-containing’ and ‘EFL-containing’ types. Recently, EF-1α and EFL genes have been surveyed across the diversity of eukaryotes to explore the origin and evolution of EFL genes. Although the phylum Cercozoa is a diverse group, gene data for either EFL or EF-1α are absent from all cercozoans except chlorarachniophytes which were previously defined as EFL-containing members. Our survey revealed that two members of the cercozoan subphylum Filosa (Thaumatomastix sp. and strain YPF610) are EFL-containing members. Importantly, we identified EF-1α genes from two members of Filosa (Paracercomonas marina and Paulinella chromatophora) and a member of the other subphylum Endomyxa (Filoreta japonica). All cercozoan EFL homologues could not be recovered as a monophyletic group in maximum-likelihood and Bayesian analyses, suggesting that lateral gene transfer was involved in the EFL evolution in this protist assemblage. In contrast, EF-1α analysis successfully recovered a monophyly of three homologues sampled from the two cercozoan subphyla. Based on the results, we postulate that cercozoan EF-1α genes have been vertically inherited, and the current EFL-containing species may have secondarily lost their EF-1α genes.  相似文献   

16.
Incubation of Elongation factor (EF-1) with the protease elastase results in disaggregation of EF-1 with no loss of activity. Sodium dodecyl sulfate disc gel analysis shows that EF-1 is cleaved by elastase with the formation of two major polypeptides of 30,000 and 15,000 mol. wt. Evidence is also presented that under certain conditions, the polypeptide products formed after elastase treatment of EF-1 can rejoin in the presence of phenylmethanesulfonyl-fluoride. Phospholipase C preparations also cause disaggregation of EF-1 but the present results indicate that this is not due to a protease contamination in the phospholipase C.  相似文献   

17.
The flagellar apparatus of the biflagellate zoospores from Blastophysa rhizopus Reinke has 180° rotational symmetry of the major components and counterclockwise absolute orientation. The basal bodies are connected anteriorly by a prominent striated distal fiber and posteriorly by two proximal striated bands. The C microtubules in the basal bodies terminate proximal to the transition region. Terminal caps and well-defined proximal sheaths are absent. The four microtubular rootlets diverge at a very small angle from the basal bodies. Six to eight (usually seven) microtubules are present in the s rootlets and two microtubules in the d rootlets. Rootlet 1s is associated with the eyespot. Each d rootlet is subtended by a coarsely striated fiber. Rootlet Id also has a finely striated fiber, roughly opposite the coarsely striated fiber, associated with it. Rhizoplasts and mating structures were not observed. Ultrastructural features of B. rhizopus zoospores are essentially identical with those found in examined members of the Siphonocladales sensu lato (= Siphonocladadales/Cladophorales complex) and Dasycladales, and have relatively few features in common with motile cells of caulerpalean algae. Blastophysa rhizopus probably does not represent an intermediate between the Siphonocladadales and the Caulerpales. Its evolutionary history is different from that of other algae placed in the siphonocladalean family Chaetosiphonaceae. Whether or not Blastophysa is representative of the ancestor to the Siphonodadales and Dasycladales is unclear.  相似文献   

18.
Ultrastructural and molecular sequence data were used to assess the phylogenetic position of the coccoid green alga deposited in the culture collection of the University of Texas at Austin under the name of Neochloris sp. (1445). This alga has uninucleate vegetative cells and a parietal chloroplast with pyrenoids; it reproduces by forming naked biflagellate zoospores. Electron microscopy revealed that zoospores have basal bodies displaced in the counterclockwise absolute orientation and overlapped at their proximal ends. Four microtubular rootlets numbering 2 and 2/1 are alternatively arranged in a cruciate pattern. A system I fiber extends beneath each d rootlet and a system II fiber (rhizoplast) originates from each basal body and extends peripherally along each d rootlet. These features differ substantially from those of the three genera, Ettlia (Komárek) Deason et al., Neochloris (Starr) Deason et al., and Parietochloris Watanabe et Floyd, all of which were previously accommodated in the single genus Neochloris Starr. Sequence data from the nuclear small subunit ribosomal RNA gene were obtained and compared with published green algal sequences. Results from the ultrastructural and sequence data support the placement of Neochloris sp. (The Culture Collection of Algae at the University of Texas at Austin [UTEX] no. 1445) in the Ulvophyceae. This isolate is described as Pseudoneochloris marina , gen. et sp. nov. in the Ulotrichales, Ulvophyceae.  相似文献   

19.
Elongation factor 1 alpha (EF-1 alpha) was purified to homogeneity from full-grown oocytes of Xenopus laevis. This protein is encoded by a gene previously shown to be expressed in male and female germ cells, and repressed in somatic cells. The purified protein was identified with EF-1 alpha on criteria of molecular mass, cross-reaction with antibodies raised against Artemia salina EF-1 alpha, affinity for guanine nucleotides, and ability to promote the mRNA-dependent binding of aminoacyl tRNA to 80S ribosomes.  相似文献   

20.
 Elongation factor-1α (EF-1α) is an evolutionarily highly conserved universal cofactor of protein synthesis in all living cells. In this study, its use as a positive control in situ hybridization assays for specific detection of mRNA sequences was evaluated. Northern blot analysis of various non-neoplastic and neoplastic cultured cells of different stages of confluence, cell shape, and cell cycle status revealed that EF-1α had a lower and more homogeneous expression than did β-actin. In situ hybridization assays using digoxigenin-labeled riboprobes for the detection of EF-1α mRNA in routinely formalin-fixed, paraffin-embedded tissue sections showed that EF-1α is a suitable positive control in all types of cells. However, variation of protease pretreatments demonstrated distinct and sometimes mutually exclusive digestion conditions for different cell types within the same tissue sample. Our results indicate that detection of EF-1α mRNA is an appropriate internal standard for in situ hybridization assays and that it is useful to control artifacts such as false negatives caused by inappropriate protease pretreatments. The observed variability of optimal protease pretreatments for different cell types within the same tissue section strengthens the importance of a positive control in in situ hybridization assays. Accepted: 17 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号