首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malaria inflicts an enormous toll in human lives and this burden is increasing. Present means to fight the disease, such as drugs and insecticides, are insufficient. Moreover, an effective vaccine has not yet been developed. This review examines an alternative strategy for malaria control, namely the genetic modification of mosquitoes to make them inefficient vectors for the parasite. The article summarises progress made toward the development of transposable element vectors for germ line transformation and the search for mosquito markers of transformation. Also reviewed is the search for anti-malarial effector genes whose products can inhibit development of the parasite in the mosquito with minimal fitness burden. While much progress has been made, much work remains to be done. Future research directions are discussed.  相似文献   

2.
We are developing transgenic mosquitoes resistant to malaria parasites to test the hypothesis that genetically-engineered mosquitoes can be used to block the transmission of the parasites. We are developing and testing many of the necessary methodologies with the avian malaria parasite, Plasmodium gallinaceum, and its laboratory vector, Aedes aegypti, in anticipation of engaging the technical challenges presented by the malaria parasite, P. falciparum, and its major African vector, Anopheles gambiae. Transformation technology will be used to insert into the mosquito a synthetic gene for resistance to P. gallinaceum. The resistance gene will consist of a promoter of a mosquito gene controlling the expression of an effector protein that interferes with parasite development and/or infectivity. Mosquito genes whose promoter sequences are capable of sex- and tissue-specific expression of exogenous coding sequences have been identified, and stable transformation of the mosquito has been developed. We now are developing the expressed effector portion of the synthetic gene that will interfere with the transmission of the parasites. Mouse monoclonal antibodies that recognize the circumsporozoite protein of P. gallinaceum block sporozoite invasion of mosquito salivary glands, as well as abrogate the infectivity of sporozoites to a vertebrate host, the chicken, Gallus gallus, and block sporozoite invasion and development in susceptible cell lines in vitro. Using the genes encoding these antibodies, we propose to clone and express single-chain antibody constructs (scFv) that will serve as the effector portion of the gene that interferes with transmission of P. gallinaceum sporozoites.  相似文献   

3.
Malaria kills millions of people every year, and new control measures are urgently needed. The recent demonstration that (effector) genes can be introduced into the mosquito germ line to diminish their ability to transmit the malaria parasite offers new hope toward the fight of the disease (Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. (2002) Nature, 417, 452-455). Because of the high selection pressure that an effector gene imposes on the parasite population, development of resistant strains is likely to occur. In search of additional antiparasitic effector genes, we have generated transgenic Anopheles stephensi mosquitoes that express the bee venom phospholipase A2 (PLA2) gene from the gut-specific and blood-inducible Anopheles gambiae carboxypeptidase (AgCP) promoter. Northern blot analysis indicated that the PLA2 mRNA is specifically expressed in the guts of transgenic mosquitoes with peak expression at approximately 4 h after blood ingestion. Western blot and immunofluorescence analyses detected PLA2 protein in the midgut epithelia of transgenic mosquitoes from 8 to 24 h after a blood meal. Importantly, transgene expression reduced Plasmodium berghei oocyst formation by 87% on average and greatly impaired transmission of the parasite to naive mice. The results indicate that PLA2 may be used as an additional effector gene to block the development of the malaria parasite in mosquitoes.  相似文献   

4.
Malaria, a disease that infects 300 million people throughout the world and kills more than a million people, mostly children in sub-Saharan Africa, involves three organisms. The human host where the disease is seen, the protozoan Plasmodium parasite and the mosquito. The parasite is transmitted to humans only by the mosquito vector, which in sub-Saharan regions is generally Anopheles gambiae. Malaria along with AIDS and tuberculosis are killing large numbers of people and crippling the economies of the affected African countries. Though an enormous effort has been made during the past twenty years to develop vaccines to block malaria in humans, the incidence of the disease is increasing in Africa. The reasons for this development include a breakdown in mosquito control related to increased insecticide resistance, as well as increased parasite resistance to antimalarial drugs. It is clear that new methods of Anopheles mosquito control are needed to ameliorate the medical and economic situation in sub-Saharan Africa. As a step toward new malaria control methods, the international Plasmodium falciparum and Anopheles gambiae consortia have carried out the full genome sequencing of the most deadly malaria parasite and the most efficient vector. These, combined with the human genome sequence, provide the genomic infrastructure for a better understanding of the complex interactions within the malaria triad. This essay discusses possible strategies as to how the Anopheles genome can contribute to malaria control.  相似文献   

5.
The genetic basis of mosquito resistance to malaria parasites is well established and currently receives a lot of attention. However this is not the sole determinant of the success or failure of an infection. In a recent article, Lambrechts and colleagues report the influence of the quality of the external environment of a mosquito on infection. They indicate that external variations could substantially reduce the importance of resistance genes in determining infection by malaria parasites. Furthermore, these variations could influence future plans to use malaria-resistant transgenic mosquitoes to control parasite transmission.  相似文献   

6.
Malaria is one of the deadliest infectious diseases and kills more than one million people every year. For transmission to occur, the malaria parasite has to complete an elaborate developmental program in hostile mosquito environment. Thus, understanding the molecular mechanisms by which mosquitoes limit the parasite development may lead to new methods for controlling malaria. There has been considerable progress during the last decade in this research area. This review focuses on the mosquito response to midgut invasion of the malaria parasite and examines the role of mosquito digestive enzymes, peritrophic matrix and microvillar proteins as barriers to parasite development.  相似文献   

7.
Malaria continues to kill millions of people every year and new strategies to combat this disease are urgently needed. Recent advances in the study of the mosquito vector and its interactions with the malaria parasite suggest that it may be possible to genetically manipulate the mosquito in order to reduce its vectorial capacity. Here we review the advances made to date in four areas: (1) the introduction of foreign genes into the mosquito germ line; (2) the characterization of tissue-specific promoters; (3) the identification of gene products that block development of the parasite in the mosquito; and (4) the generation of transgenic mosquitoes impaired for malaria transmission. While initial results show great promise, the problem of how to spread the blocking genes through wild mosquito populations remains to be solved.  相似文献   

8.
Deciphering molecular interactions between the malaria parasite and its mosquito vector is an emerging area of research that will be greatly facilitated by the recent sequencing of the genomes of Anopheles gambiae mosquito and of various Plasmodium species. So far, most such studies have focused on Plasmodium berghei, a parasite species that infects rodents and is more amenable to studies. Here, we analysed the expression pattern of nine An.gambiae genes involved in immune surveillance during development of the human malaria parasite P.falciparum in mosquitoes fed on parasite-containing blood from patients in Cameroon. We found that P.falciparum ingestion triggers a midgut-associated, as well as a systemic, response in the mosquito, with three genes, NOS, defensin and GNBP, being regulated by ingestion of gametocytes, the infectious stage of the parasite. Surprisingly, we found a different pattern of expression of these genes in the An.gambiae-P.berghei model. Therefore, differences in mosquito reaction against various Plasmodium species may exist, which stresses the need to validate the main conclusions suggested by the P.berghei-An.gambiae model in the P.falciparum-An.gambiae system.  相似文献   

9.
Incessant transmission of the parasite by mosquitoes makes most attempts to control malaria fail. Blocking of parasite transmission by mosquitoes therefore is a rational strategy to combat the disease. Upon ingestion of blood meal mosquitoes secrete chitinase into the midgut. This mosquito chitinase is a zymogen which is activated by the removal of a propeptide from the N-terminal. Since the midgut peritrophic matrix acts as a physical barrier, the activated chitinase is likely to contribute to the further development of the malaria parasite in the mosquito. Earlier it has been shown that inhibiting chitinase activity in the mosquito midgut blocked sporogonic development of the malaria parasite. Since synthetic propeptides of several zymogens have been found to be potent inhibitors of their respective enzymes, we tested propeptide of mosquito midgut chitinase as an inhibitor and found that the propeptide almost completely inhibited the recombinant or purified native Anopheles gambiae chitinase. We also examined the effect of the inhibitory peptide on malaria parasite development. The result showed that the synthetic propeptide blocked the development of human malaria parasite Plasmodium falciparum in the African malaria vector An. gambiae and avian malaria parasite Plasmodium gallinaceum in Aedes aegypti mosquitoes. This study implies that the expression of inhibitory mosquito midgut chitinase propeptide in response to blood meal may alter the mosquito's vectorial capacity. This may lead to developing novel strategies for controlling the spread of malaria.  相似文献   

10.
Unlike most eukaryotes, many apicomplexan parasites contain only a few unlinked copies of ribosomal RNA (rRNA) genes. Based on stage-specific expression of these genes and structural differences among the rRNA molecules it has been suggested that Plasmodium spp. produce functionally different ribosomes in different developmental stages. This hypothesis was investigated through comparison of the structure of the large subunit rRNA molecules of the rodent malaria parasite, Plasmodium berghei, and by disruption of both of the rRNA gene units that are transcribed exclusively during development of this parasite in the mosquito (S-type rRNA gene units). In contrast to the human parasite, Plasmodium falciparum, we did not find evidence of structural differences in core regions of the distinct large subunit rRNAs which are known to be associated with catalytic activity including the GTPase site that varies in P. falciparum. Knockout P. berghei parasites lacking either of the S-type gene units were able to complete development in both the vertebrate and mosquito hosts. These results formally exclude the hypothesis that two functionally different ribosome types distinct from the predominantly blood stage-expressed A-type ribosomes, are required for development of all Plasmodium species in the mosquito. The maintenance of two functionally equivalent rRNA genes might now be explained as a gene dosage phenomenon.  相似文献   

11.
It is estimated that every year malaria infects approximately 300 million people and accounts for the death of 2 million individuals. The Plasmodium parasites that cause malaria in humans are transmitted exclusively by mosquito species belonging to the Anopheles genus. The recent development of a gene transfer technology for Anopheles stephensi mosquitoes, using the Minos transposable element marked with the enhanced green fluorescent protein EGFP (Catteruccia, F., Nolan, T., Loukeris, T. G., Blass, C., Savakis, C., Kafatos, F. C., and Crisanti, A. (2000) Nature 405, 959--962), provides now a powerful tool to investigate the role of mosquito molecules involved in the interaction with the malaria parasite. Such technology, when further developed with additional markers and transposable elements, will be invaluable for analyzing the biology of the vector and for developing malaria-resistant mosquitoes to be used as a tool to control malaria transmission in the field. We report here the germline transformation of A. stephensi mosquitoes using a piggyBac-based transposon to drive integration of the gene encoding for the red fluorescent protein dsRED. A. stephensi embryos were injected with transformation vector pPBRED containing the dsRED marker cloned within the arms of piggyBac. Microscopic analysis of G(1) larvae revealed the presence of seven fluorescent phenotypes whose different molecular origins were confirmed by Southern blotting analysis. Sequencing of the insertion sites in two lines demonstrated that integrations had occurred at TTAA nucleotides in accordance with piggyBac-mediated transpositions.  相似文献   

12.
13.
14.
The malaria parasite, Plasmodium, requires sexual development in the mosquito before it can be transmitted to the vertebrate host. Mosquito genes are able to substantially modulate this process, which can result in major decreases in parasite numbers. Even in susceptible mosquitoes, haemolymph proteins implicated in systemic immune reactions, together with local epithelial responses, cause lysis of more than 80% of the ookinetes that cross the mosquito midgut. In a refractory mosquito strain, immune responses lead to melanisation of virtually all parasites. Conversely, certain mosquito genes have an opposite effect: they are used by the parasite to evade defence reactions. Detailed understanding of the interplay between positive and negative regulators of parasite development could lead to the generation of novel approaches for malaria control through the vector.  相似文献   

15.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

16.
The genetic basis of a host's resistance to parasites has important epidemiological and evolutionary consequences. Understanding this genetic basis can be complicated by non-genetic factors, such as environmental quality, which may influence the expression of genetic resistance and profoundly alter patterns of disease and the host's response to selection. In particular, understanding the environmental influence on the genetic resistance of mosquitoes to malaria gives valuable knowledge concerning the use of malaria-resistant transgenic mosquitoes as a measure of malaria control. We made a step towards this understanding by challenging eight isofemale lines of the malaria vector Anopheles stephensi with the rodent malaria parasite Plasmodium yoelii yoelii and by feeding the mosquitoes with different concentrations of glucose. The isofemale lines differed in infection loads (the numbers of oocysts), corroborating earlier studies showing a genetic basis of resistance. In contrast, the proportion of infected mosquitoes did not differ among lines, suggesting that the genetic component underlying infection load differs from the genetic component underlying infection rate. In addition, the mean infection load and, in particular, its heritable variation in mosquitoes depended on the concentration of glucose, which suggests that the environment affects the expression and the evolution of the mosquitoes' resistance in nature. We found no evidence of genotype-by-environment interactions, i.e. the lines responded similarly to environmental variation. Overall, these results indicate that environmental variation can significantly reduce the importance of genes in determining the resistance of mosquitoes to malaria infection.  相似文献   

17.
Engineering Plasmodium-refractory phenotypes in mosquitoes   总被引:4,自引:0,他引:4  
A remarkable number of effector mechanisms have been developed for interfering with malaria parasite development in mosquitoes. These effector mechanisms affect different aspects of parasite biology and therefore could be targeted synergistically to reduce the probability of emergence of parasite resistance to any one mechanism. The use of these mechanisms will depend on how efficiently and safely they can be introduced into existing mosquito populations.  相似文献   

18.
Transmission from the vertebrate host to the mosquito vector represents a major population bottleneck in the malaria life cycle that can successfully be targeted by intervention strategies. However, to date only about 25 parasite proteins expressed during this critical phase have been functionally analysed by gene disruption. We describe the first systematic, larger scale generation and phenotypic analysis of Plasmodium berghei knockout (KO) lines, characterizing 20 genes encoding putatively secreted proteins expressed by the ookinete, the parasite stage responsible for invasion of the mosquito midgut. Of 12 KO lines that were generated, six showed significant reductions in parasite numbers during development in the mosquito, resulting in a block in transmission of five KOs. While expression data, time point of essential function and mutant phenotype correlate well in three KOs defective in midgut invasion, in three KOs that fail at sporulation, maternal inheritance of the mutant phenotype suggests that essential function occurs during ookinete formation and thus precedes morphological abnormalities by several days.  相似文献   

19.
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.  相似文献   

20.
The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号