首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proton nuclear magnetic resonance study of the reaction of apohemoglobin A with both oxidized and reduced hemes reveals that at least two slowly interconverting species are initially formed, only one of which corresponds to the native proteins. Reconstitutions with isotope-labeled hemes reveal that the hyperfine-shift patterns for heme resonances in the metazido derivatives differ for the two species by interchange of heme environment characteristic of heme orientational disorder about the alpha, gamma-meso axis, as previously demonstrated for myoglobin [La Mar, G. N., Davis, N. L., Parish, D. W., & Smith, K. M. (1983) J. Mol. Biol. 168, 887-896]. Careful scrutiny of the 1H NMR spectrum of freshly prepared hemoglobin A (Hb A) reveals that characteristic resonances for the alternate heme orientation are present in both subunits, clearly demonstrating that "native" Hb A possesses an important structure heterogeneity. It is observed that this heterogeneity disappears with time for one subunit but remains unchanged in the other. This implies that a metastable disordered state in vivo involves the alpha subunit and an equilibrium disordered state both in vivo and in vitro is involved within the beta subunit. The presence of metastable disorder in fresh blood suggests an in vivo hemoglobin assembly from apoprotein and heme that is similar to the in vitro reconstitution process. The slow equilibration and known lifetimes for erythrocytes provide a rationalization for the presence of detectable metastable states. The implications of such heme disorder for Hb function are discussed.  相似文献   

2.
Y Yamamoto  G N La Mar 《Biochemistry》1986,25(18):5288-5297
The reaction of heme and apoprotein has been studied in detail in 1H NMR spectroscopy in order to elucidate the conditions for reconstitution of hemoglobin (Hb) to yield the native protein. The initially formed holoprotein exists as a mixture of isomers with individual subunits possessing the two heme orientations differing by a 180 degrees rotation about the alpha, gamma-meso axis [La Mar, G. N., Yamamoto, Y., Jue, T., Smith, K. M., & Pandey, R. K. (1985) Biochemistry 24, 3826-3831]. We characterize in detail herein the rates and mechanism of heme reorientation and show that the rates differ dramatically for met-aquo and met-azido derivatives and are highly pH dependent in both subunits in a fashion that allows selective equilibration in either subunit. Nonequilibrium mixtures of such isomers can be kinetically trapped in the met-azido form and stored in this metastable form for many months. With kinetically controlled heme orientationally disordered Hb, unambiguous assignment of 1H NMR resonances to individual subunits has been made for the met-azido derivative, which demonstrates approximately 2% and 10% equilibrium heme disorder in the alpha- and beta-subunits, respectively. Comparison of the 1H NMR spectra of various heme rotationally disordered Hb derivatives indicates that this disorder is observable in all forms studied, but is most easily recognized as heme disorder and most conveniently monitored in the met-azido complex. Structural consequences of heme disorder appear to manifest themselves much more strongly in peripheral than axial interactions at the heme. Preliminary studies reveal that both the rate of autoxidation of oxy-Hb and the azide affinity of met-aquo-Hb depend on the orientation of the heme.  相似文献   

3.
Wagenbach et al. (1991, BioTechnology, 9, 57-61) have recently developed a system for producing soluble recombinant tetrameric hemoglobin in yeast: hemoglobin begins to appear 4-5 h after induction with galactose, alpha- and beta-globin chains fold in vivo and endogeneously produced heme is incorporated into hemoglobin tetramers. We have further characterized the oxygen-binding properties, as well as the tetramer stability, of recombinant human Hb A made in yeast. After purification by ion-exchange chromatography, a single band at the same position as normal human Hb A was obtained using cellulose acetate electrophoresis. Although the oxy and deoxy forms of purified recombinant Hb A made in yeast were spectrophotometrically identical to native human Hb A, the oxygen-binding curve was shifted slightly left of that for native human Hb A. Further purification of recombinant hemoglobin by FPLC revealed two fractions: one (fraction B) with low cooperativity and high oxygen affinity, and the other (fraction A) with almost identical cooperativity and oxygen affinity compared with native human Hb A. The Bohr effect of fraction A was also identical to native human Hb A. Hemoglobin in fraction B with lowered cooperativity precipitated approximately 1.5 times faster than normal human Hb A during mechanical agitation, while hemoglobin in fraction A with normal cooperativity precipitated with kinetics identical to native human Hb A. These results suggest that some of the recombinant molecules made in yeast fold improperly, and that these molecules may exhibit decreased cooperativity for oxygen binding and decreased stability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model.  相似文献   

5.
Site-directed mutagenesis of an important subunit contact site, Asp-99(beta), by a Lys residue (D99K(beta)) was proven by sequencing the entire beta-globin gene and the mutant tryptic peptide. Oxygen equilibrium curves of the mutant hemoglobin (Hb) (2-15 mM in heme) indicated that it had an increased oxygen affinity and a lowered but significant amount of cooperativity compared to native HbA. However, in contrast to normal HbA, oxygen binding of the recombinant mutant Hb was only marginally affected by the allosteric regulators 2,3-diphosphoglycerate or inositol hexaphosphate and was not at all responsive to chloride. The efficiency of oxygen binding by HbA in the presence of allosteric regulators was limited by the mutant Hb. At concentrations of 0.2 mM or lower in heme, the mutant D99K(beta) Hb was predominantly a dimer as demonstrated by gel filtration, haptoglobin binding, fluorescence quenching, and light scattering. The purified dimeric recombinant Hb mutant exists in 2 forms that are separable on isoelectric focusing by about 0.1 pH unit, in contrast to tetrameric hemoglobin, which shows 1 band. These mutant forms, which were present in a ratio of 60:40, had the same masses for their heme and globin moieties as determined by mass spectrometry. The elution positions of the alpha- and beta-globin subunits on HPLC were identical. Circular dichroism studies showed that one form of the mutant Hb had a negative ellipticity at 410 nm and the other had positive ellipticity at this wavelength. The findings suggest that the 2 D99K(beta) recombinant mutant forms have differences in their heme-protein environments.  相似文献   

6.
Two heme propionate side chains, which are attached at the 6 and 7 positions of the heme framework, are linked with Arg45 and Ser92, respectively, in sperm whale myoglobin. To evaluate the role of each propionate, two kinds of one-legged hemins, 6-depropionated and 7-depropionated protohemins, were prepared and inserted into the apomyoglobin to yield two reconstituted proteins. Structural data of the reconstituted myoglobins were obtained via an X-ray crystallographic analysis at a resolution of 1.1-1.4 A and resonance Raman spectroscopy. It was found that the lack of the 6-propionate reduces the number of hydrogen bonds in the distal site and clearly changes the position of the Arg45 residue with the disrupting Arg45-Asp60 interaction. In contrast, the removal of the 7-propionate does not cause a significant structural change in the residues of the distal and proximal sites. However, the resonance Raman studies suggested that the coordination bond strength of the His93-Fe bond for the protein with the 7-depropionated protoheme slightly increases compared to that for the protein with the native heme. The O2 and CO ligand binding studies for the reconstituted proteins with the one-legged hemes provide an important insight into the functional role of each propionate. The lack of the 6-propionate accelerates the O2 dissociation by ca. 3-fold compared to those of the other reconstituted and native proteins. The lack of the 7-propionate enhances the CO affinity by 2-fold compared to that of the protein with the native heme. These results indicate that the 6-propionate clearly contributes to the stabilization of the bound O2, whereas the 7-propionate plays an important role in the regulation of the Fe-His bond.  相似文献   

7.
In our previous work, we demonstrated that the replacement of the "heme binding module," a segment from F1 to G5 site, in myoglobin with that of hemoglobin alpha-subunit converted the heme proximal structure of myoglobin into the alpha-subunit type (Inaba, K., Ishimori, K. and Morishima, I. (1998) J. Mol. Biol. 283, 311-327). To further examine the structural regulation by the heme binding module in hemoglobin, we synthesized the betaalpha(HBM)-subunit, in which the heme binding module (HBM) of hemoglobin beta-subunit was replaced by that of hemoglobin alpha-subunit. Based on the gel chromatography, the betaalpha(HBM)-subunit was preferentially associated with the alpha-subunit to form a heterotetramer, alpha(2)[betaalpha(HBM)(2)], just as is native beta-subunit. Deoxy-alpha(2)[betaalpha(HBM)(2)] tetramer exhibited the hyperfine-shifted NMR resonance from the proximal histidyl N(delta)H proton and the resonance Raman band from the Fe-His vibrational mode at the same positions as native hemoglobin. Also, NMR spectra of carbonmonoxy and cyanomet alpha(2)[betaalpha(HBM)(2)] tetramer were quite similar to those of native hemoglobin. Consequently, the heme environmental structure of the betaalpha(HBM)-subunit in tetrameric alpha(2)[betaalpha(HBM)(2)] was similar to that of the beta-subunit in native tetrameric Hb A, and the structural conversion by the module substitution was not clear in the hemoglobin subunits. The contrastive structural effects of the module substitution on myoglobin and hemoglobin subunits strongly suggest different regulation mechanisms of the heme proximal structure between these two globins. Whereas the heme proximal structure of monomeric myoglobin is simply determined by the amino acid sequence of the heme binding module, that of tetrameric hemoglobin appears to be closely coupled to the subunit interactions.  相似文献   

8.
Low frequency resonance Raman (RR) spectra are reported for deoxy hemoglobin (Hb), its isolated subunits, its analogue bearing methine-deuterated hemes in all four subunits (Hb-d(4)), and the hybrids bearing the deuterated heme in only one type of subunit, which are [alpha(d4)beta(h4)](2) and [alpha(h4)beta(d4)](2). Analyzed collectively, the spectra reveal subunit-specific modes that conclusively document subtle differences in structure for the heme prosthetic groups in the two types of subunits within the intact tetramer. Not surprisingly, the most significant spectral differences are observed in the gamma(7) mode that has a major contribution from out of plane bending of the methine carbons, a distortion that is believed to relieve strain in the high-spin heme prosthetic groups. The results provide convincing evidence for the utility of selectively labeled hemoglobin hybrids in unraveling the separate subunit contributions to the RR spectra of Hb and its various derivatives and for thereby detecting slight structural differences in the subunits.  相似文献   

9.
Apohemoglobin (apoHb) is a dimeric globular protein with two vacant heme-binding pockets that can bind heme or other hydrophobic ligands. Purification of apoHb is based on partial hemoglobin (Hb) unfolding to facilitate heme extraction into an organic solvent. However, current production methods are time consuming, difficult to scale up, and use highly flammable and toxic solvents. In this study, a novel and scalable apoHb production method was developed using an acidified ethanol solution to extract the hydrophobic heme ligand into solution and tangential flow filtration to separate heme from the resultant apoprotein. Total protein and active protein yields were >95% and ~75%, respectively, with <1% residual heme in apoHb preparations and >99% purity from sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis. Virtually no loss of apoHb activity was detected at 4°C, −80°C, and in lyophilized form during long term storage. Structurally, size exclusion chromatography (SEC) and circular dichroism indicated that apoHb was dimeric with a ~25% reduction of helical content compared to Hb. Furthermore, mass spectroscopy and reverse-phase chromatography indicated that the mass of the α and β subunits were virtually identical to the theoretical mass of these subunits in Hb and had no detectable oxidative modifications upon heme removal from Hb. SEC confirmed that apoHb bound to haptoglobin at a similar ratio to that of native Hb. Finally, reconstituted Hb (rHb) was processed via a hemichrome removal method to isolate functional rHb for biophysical characterization in which the O2 equilibrium curve, O2 dissociation, and CO association kinetics of rHb were virtually identical to native Hb. Overall, this study describes a novel and improved method to produce apoHb, as well as presents a comprehensive biochemical analysis of apoHb and rHb.  相似文献   

10.
Y Blatt  I Pecht 《Biochemistry》1979,18(13):2917-2922
Anaerobic reductive spectrophotometric titrations of Pseudomonas aeruginosa cytochrome oxidase were performed. Both types of hemes (C and D) of the dimeric enzyme were monitored. The reduction process was found to involve cooperative allosteric and spectroscopic interactions between the two subunits. The model fitting the data best involves the following features. (1) The redox potential of heme C is about 60 mV higher than that of heme D. (2) In the electron uptake, a positive cooperativity of about 30 mV exists between the two D-type hemes residing in the two subunits. (3) A negative cooperativity of the same magnitude (30 mV) is found between the two C-type hemes bound to two subunits. (4) No interaction was found between heme C and D in the same subunit or in the different subunits. (5) It is suggested that the reduction of the heme, of each kind, has about twice the spectral change compared to that observed upon reduction of the second one. The possible significance of this model for the mechanism of action of the enzyme is discussed  相似文献   

11.
The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed to the reactive 117 site of Synechocystis Hb as a potential determinant of biophysical and, perhaps, functional properties.  相似文献   

12.
In Hb Warsaw Val replaces the Phe normally present at the heme contact position beta 42 (CD1). This variant is unstable, and it readily undergoes methemoglobin formation. In DEAE-cellulose chromatography, the variant hemoglobin co-eluted with Hb A; a partially heme-depleted fraction of the variant, representing 5-6% of the total hemoglobin, eluted separately and in pure form. The heme replete form of Hb Warsaw exhibited decreased oxygen affinity with a normal Bohr effect and normal cooperativity and interaction with 2,3-diphosphoglycerate (DPG). The heme-depleted Hb Warsaw had a higher oxygen affinity than that of Hb A, decreased cooperativity and 2,3-DPG interaction, and a very low alkaline Bohr effect. Gel filtration of the heme-depleted form showed it to exist entirely as alpha beta dimers. Globin chain synthesis by Hb Warsaw-containing reticulocytes followed a balanced alpha/beta ratio. In short-term synthesis experiments, a major portion of incorporated radiolabeled L-leucine was recovered from the dimeric, heme-depleted Hb Warsaw fraction, suggesting that subunit association precedes the incorporation of heme into the beta subunits in the post-synthetic assembly of this hemoglobin. Structural analysis of deoxyhemoglobin containing roughly equal proportions of normal and variant beta chains showed that the replacement leaves a cavity next to the heme that is large enough to hold a water molecule, which may account for the instability of Hb Warsaw. The heme and the pyrrol nearest to ValCD1 tilt into the cavity. The resulting increase in the tilt of the proximal histidine relative to the heme plane, coupled with a possible stretching of the Fe-N epsilon bond may account for the low oxygen affinity.  相似文献   

13.
Y Huang  M L Doyle    G K Ackers 《Biophysical journal》1996,71(4):2094-2105
Hemoglobin tetramers [Zn/FeO(2)] containing oxygenated subunits (FeO(2)), in combination with unligated subunits containing zinc-substituted hemes (Zn), were analyzed to determine their contributions to the cooperativity of oxygen binding at the Fe sites. Energetic consequences of possible perturbation by zinc substitution were evaluated in all combinations of unligated Zn/Fe hybrid tetramers. A general thermodynamic strategy that corrects for the energetic effects of substituting a second metal for Fe showed the perturbations of Zn substitution to be negligible. This permitted cooperativity parameters of the native Fe/FeO(2) intermediates to be calculated from data on the corresponding Zn/FeO(2) molecules. These parameters, determined explicitly for all eight oxygen-binding intermediates (Fe/FeO(2)), were found to be identical to those predicted earlier from analyzing the O(2) binding data of normal hemoglobin according to the "molecular code" of hemoglobin allostery. The cooperativity parameters determined for this system showed the same distribution pattern found previously for five other oxygen analog systems (Fe/FeCN, FE/Mn(3+), Co/FECO, Co/FeCN, and Fe/FeCO).  相似文献   

14.
The proton nuclear magnetic resonance spectra of the soluble fragment of native bovine and genetically engineered wild-type rat ferricytochrome b5 reconstituted with a wide variety of hemes chemically modified at 2- and/or 4-positions have been recorded and analyzed. While all but one nonsymmetric heme yielded comparable amounts of the two heme orientations immediately after reconstitution, the relative proportion of the two orientations at equilibrium varied widely. The unpaired spin density distribution in the heme pi system leads to substituent hyperfine shift patterns in these paramagnetic complexes that are completely diagnostic of the heme orientation in the protein matrix. An empirical assignment strategy is outlined and applied which allows unequivocal assignment of the absolute orientation of a derivatized heme within the protein matrix. Using a series of hemes lacking 2-fold symmetry solely due to a single substitution, the preferences for localized site occupation of vinyls, methyls, and hydrogens are developed. The large differences in relative stability of the two orientations of native protohemin in the two cytochromes b5 is shown to result from the additivity of localized effects for the bovine protein and the near cancellation of competing effects in the rat protein. The major determinant of the heme orientation is judged to be a repulsive interaction between a vinyl and a hydrophobic cluster of amino acids including positions 23 and 25. The differences in this heme orientational preference among bovine, rat, and chicken ferricytochromes b5 could be correlated with the relative steric bulk of the residues at positions 23 and 25.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and β Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/β globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.  相似文献   

16.
Study of the specific heme orientation in reconstituted hemoglobins   总被引:1,自引:0,他引:1  
K Ishimori  I Morishima 《Biochemistry》1988,27(13):4747-4753
NMR studies of the recombination reaction of apohemoglobin derivatives with natural and unnatural hemes and of the heme-exchange reaction for reconstituted hemoglobin have revealed that the heme is incorporated into the apoprotein with stereospecific heme orientations dependent upon the heme peripheral 2,4-substituents and the axial iron ligand(s). Heme orientations also depend on whether recombination occurs at the alpha or beta subunit and on whether or not the complementary subunit is occupied by the heme. In the recombination reaction with the azido complex of deuterohemin, the alpha subunit of the apohemoglobin preferentially combines with the hemin in the "disordered" heme orientation, whereas protohemin is inserted in either of two heme orientations. Mesohemin inserts predominantly in the "native" heme orientation. For the beta subunit, specific heme orientation was also encountered, but the specificity was somewhat different from that of the alpha subunit. It was also shown that the specific heme orientation in both subunits is substantially affected by the axial heme ligands. These findings imply that apohemoglobin senses the steric bulkiness of both the porphyrin 2,4-substituents and the axial iron ligands in the heme-apoprotein recombination reaction. To gain an insight into the effect of the protein structure, the heme reconstitution reaction of semihemoglobin, demonstrating that the heme orientation in the reconstituted semihemoglobin with the azido-deuterohemin complex was in the native form, was also examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Holt JM  Klinger AL  Yarian CS  Keelara V  Ackers GK 《Biochemistry》2005,44(36):11925-11938
The complete binding cascade of human hemoglobin consists of eight partially ligated intermediates and 16 binding constants. Each intermediate binding constant can be evaluated via dimer-tetramer assembly when ligand configurations within the tetramer are fixed through the use of hemesite analogs. The Zn/Fe analog, in which the nonbinding Zn2+ heme substitutes for deoxy Fe2+ heme, also permits direct measurement of O2 binding to the remaining Fe2+ hemesites within the symmetrically ligated Hb tetramers. Measurement of O2 binding over a range of Zn/Fe Hb concentrations to both alpha-subunits (species 23) or to both beta-subunits (species 24) shows noncooperative binding and incomplete saturation of the available Fe2+ hemesites. In contrast, the asymmetrically ligated Zn/FeO2 species 21, in which both oxygens are bound to one of the dimers within the tetramer, exhibits positive cooperativity and >90% ligation under atmospheric conditions. These properties are confirmed in the present study by measurement of the rate constant for tetramer dissociation to free dimer. The binding constants thus derived for these partially ligated intermediates are consistent with the stoichiometric constants measured for native hemoglobin by standard O2 binding techniques, providing additional evidence that Zn2+-heme substitution provides an excellent deoxy hemoglobin analog. There is no evidence that Zn-substitution stabilizes a low-affinity form of the tetramer, as previously suggested. These characterizations demonstrate distinct, nonadditive physical properties of the doubly ligated tetrameric species, yielding an asymmetric distribution of cooperativity within the cascade of O2 binding by human hemoglobin.  相似文献   

18.
Proton NMR studies on myoglobins and hemoglobins reconstituted with non-natural hemes, possessing different side chains in the pyrrolic rings, have provided interesting information for the understanding of the mechanism governing heme reorientation in the globin pocket, during synthesis of the native protein in vivo or in the reconstitution process in vitro. More recently, circular dichroism (CD) studies have been reported as a qualitative, alternative tool, with respect to 1H-NMR for detecting heme disorder in a reconstituted myoglobin or hemoglobin. In this paper, a CD study is reported on the reconstitution of horse heart myoglobin with protoheme XIII, a heme possessing true rotational symmetry about its alpha, gamma-meso axis. The results obtained show that the reconstitution product with this heme, which binds to the apoprotein with high affinity, not dissimilar from that of the natural heme, is characterized by a CD spectrum with bands possessing rotational strengths much lower than in the native protein. Furthermore, the CD changes detected as a function of time, during heme reorientation, in the case of natural heme, are absent when the apoprotein is reconstituted with protoheme XIII. These data provide independent evidence for reorientation of the natural heme, which follows its insertion into the protein matrix.  相似文献   

19.
It has been thought for several years that the greatly lowered oxygen affinity, high cooperativity, and heterotropic modulation displayed by tetrameric human hemoglobin (Hb) was an exclusive result of the assembly of high affinity alpha(1)beta(1) dimers into alpha(2)beta(2) tetramers. However, in recent times, it has been shown that alpha- and beta-semihemoglobins, namely alpha(heme)beta(apo) and alpha(apo)beta(heme), which are dimers of Hb characterized by a high affinity for oxygen and lack of cooperativity do respond to effectors such as 2-[4-(3,5-dichlorophenylureido) phenoxy]-2-methylpropionic acid (L35), a bezafibrate (BZF) related compound, by decreasing the ligand affinity to a considerable extent (between 60- and 130-fold). In order to shed some light on the structural basis of this phenomenon, we have developed a binding mode of L35 to semihemoglobins through docking analysis using the program GRID. Molecular modelling studies did identify sites on semihemoglobins where favourable interactions with L35 can occur. We found that the effector binds differently to the two semihemoglobins exhibiting high affinity only for the alpha chain heme pocket. The proposed binding models are consistent with the experimental findings and may be rationalized in terms of different hydrophobic and hydrophilic characteristics between alpha- and beta-heme pockets of Hb.  相似文献   

20.
tert-Butyl 1-methyl-2-propynyl ether (tBMP) was analyzed for its ability to act as a mechanism-based inactivator of p450 2B4. tBMP inactivated p450 2B4 in a time-, concentration-, and NADPH-dependent manner. Losses in activity occurred with concurrent losses in the reduced CO spectrum and native p450 heme; however, there was a greater loss in activity than could be accounted for by reduced CO spectra or native heme loss. LC/MS analysis demonstrated that the losses in native heme were accompanied by the appearance of two modified hemes with m/z values of 705Da, consistent with tBMP adducted hemes. Both adducts had identical fragmentation patterns when analyzed by LC/MS/MS. The spectra were consistent with a tBMP molecule and an oxygen atom attached to iron-depleted heme. Proton NMR studies suggest that the two modified hemes in p450 2B1 are N-alkylated on pyrrole rings A and D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号