首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrophysiological studies of cultured rat pancreatic β-cells using intracellular microelectrodes show that exogenous insulin over the range of 0.1–10.0 μg/ml inhibits the electrical activity due to 27.8 mM glucose in a dose-related manner. This inhibitory effect is manifested by a mean increase of the membrane potential from about ?20 to ?30 mV and inhibition of the manner of cells impaled showing spike activity from 60 to less than 10%. The inhibitory influence of insulin is rapid occuring within 5 min for the highest level used. The results provide evidence for a negative feedback role of insulin in regulating its own release.  相似文献   

2.
Glucose-induced insulin secretion (IS) by β-cells is controlled by two pathways. The triggering pathway involves ATP-sensitive potassium (K(ATP)) channel-dependent depolarization, Ca(2+) influx, and rise in the cytosolic Ca(2+) concentration ([Ca(2+)](c)), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca(2+)](c). After exclusion of the contribution of actin microfilaments, we here tested whether amplification implicates microtubule-dependent granule mobilization. Mouse islets were treated with nocodazole or taxol, which completely depolymerized and polymerized tubulin. They were then perifused to measure [Ca(2+)](c) and IS. Metabolic amplification was studied during imposed steady elevation of [Ca(2+)](c) by tolbutamide or KCl or by comparing [Ca(2+)](c) and IS responses to glucose and tolbutamide. Nocodazole did not alter [Ca(2+)](c) or IS changes induced by the three secretagogues, whereas taxol caused a small inhibition of IS that is partly ascribed to a decrease in [Ca(2+)](c). When [Ca(2+)](c) was elevated and controlled by KCl or tolbutamide, the amplifying action of glucose was unaffected by microtubule disruption or stabilization. Both phases of IS were larger in response to glucose than tolbutamide, although triggering [Ca(2+)](c) was lower. This difference, due to amplification, persisted in nocodazole- or taxol-treated islets, even when IS was augmented fourfold by microfilament disruption with cytochalasin B or latrunculin B. In conclusion, metabolic amplification rapidly augments first and second phases of IS independently of insulin granule translocation along microtubules. We therefore extend our previous proposal that it does not implicate the cytoskeleton but corresponds to acceleration of the priming process conferring release competence to insulin granules.  相似文献   

3.
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.  相似文献   

4.
Mitochondrial malfunction and calcium dyshomeostasis are early pathological events considered as important features of the Alzheimer’s disease (AD) brain. Recent studies have suggested mitochondrion as an active regulator of Ca2+ signaling based on its calcium buffering capacity. Herein, we investigated the mitochondrial involvement in the modulation of store-operated calcium entry (SOCE) in neural 2a (N2a) transgenic AD model cells. Results showed that SOCE was significantly depressed in N2a cells transfected with wild-type human APP695 (N2a APPwt) compared with empty vector control (N2a WT) cells. Pharmacological manipulation with mitochondrial function blockers, such as FCCP, RuR, or antimycin A/oligomycin, could inhibit mitochondrial calcium handling, and then impair SOCE pathway in N2a WT cells. Furthermore, mitochondria of N2a APPwt cells exhibited more severe swelling in response to Ca2+, which is an indication of mitochondrial membrane permeability transition (MPT), than the wild-type controls. Additionally, treatment with cyclosporin A, a potent inhibitor of cyclophilin D, which can block MPT, could significantly restore the attenuated SOCE in N2a APPwt cells. Therefore, inhibition of cyclophilin D might be a therapeutic strategy for Alzheimer’s disease.  相似文献   

5.
βig-h3 is a TGF-β (transforming growth factor β)-induced ECM (extracellular matrix) protein that induces the secretion of MMPs (matrix metalloproteinases). However, the mechanism of induction is yet to be established. In this study, siRNAs (small interfering RNAs) targeted against βig-h3 were transfected into SMMC-7721 cells [a HCC (human hepatocellular carcinoma) cell line] to knockdown the expression of βig-h3. We found that NiCl2, a potent blocker of extracellular Ca2+ entry, reduced βig-h3-induced secretion of MMP-2 and -9. Further investigation suggested that reduction in the levels of βig-h3 decreased the secretion of MMP-2 and -9 that was enhanced by an increase in the concentration of extracellular Ca2+. SNAP (S-nitroso-N-acetylpenicillamine), a NO (nitric oxide) donor, and 8-Br-cGMP (8-bromo-cGMP) inhibited thapsigargin-induced Ca2+ entry and MMP secretion in the invasive potential of human SMMC-7721 cells. Further, the inhibitory effects of 8-Br-cGMP and SNAP could be significantly enhanced by down-regulating βig-h3. βig-h3 attenuates the negative regulation of NO/cGMP-sensitive store-operated Ca2+ entry. Our findings suggest that the expression of βig-h3 might play an important role in the regulation of store-operated Ca2+ entry to increase the invasive potential of HCC cells.  相似文献   

6.
We studied the interaction of bispecific mouse mAb with human IgG Fc receptors, and assessed their ability to activate the monocytic cell line U937. Binding of monomeric hybrid anti-HuIgA1/HRP mAb to the high-affinity IgG receptor, Fc gamma RI, on U937 cells was only observed when mAb with one or more mIgG2a H chains (hybrid mIgG1-2a, mIgG2a-2b, and mIgG2a-2a) were used. These Fc gamma RI-bound hybrid mAb were capable of enhancing the internal free cytosolic Ca2+ concentration ([Ca2+]i) in U937 cells only when bound mIgG were cross-linked using F(ab')2 fragments of goat anti-mIg antibody. A hybrid mIgG1-2a mAb were cross-linked using goat anti-mIgG1 antibody, showing that the hybrid mAb themselves mediate the induction of Ca2+ increase. Remarkably, anti-Fc gamma RII mAb IV.3 was able to inhibit the Ca2+ increase induced via mIgG2a-1 or mIgG1-2a hybrid mAb completely, despite the fact that we could not detect any effect of IV.3 on binding of monomeric hybrid mIgG1-2a or mIgG2a-1 mAb to U937. The hybrid mAb were also able to induce lysis of HuIgA1-coated E using U937 effector cells. This lysis was completely inhibited by preincubation of U937 cells with mIgG2a mAb TB-3, which blocks Fc gamma RI via its Fc-part ("Kurlander phenomenon"). In contrast, Fc gamma RII-blocking mAb IV.3 and CIKM5 caused a significant enhancement of the antibody-dependent cellular cytotoxicity (ADCC) activity mediated by hybrid mIgG1-2a and mIgG2a-2b mAb. This enhancement did not occur when the parental anti-HuIgA1/2a or the hybrid anti-HuIgA1/HRP/2a-2a mAb were evaluated for ADCC activity. These findings suggest that hybrid mAb not only can bind to Fc gamma RI, but can mediate functional activation of myeloid cells. Given the effect of mAb IV.3 on [Ca2+]i changes and ADCC triggered through IgG1-2a mAb, we suggest that Fc gamma RII may have a role in the regulation of Fc gamma RI-triggered functions or signaling.  相似文献   

7.
8.
Pancreatic islets of Langerhans regulate blood glucose homeostasis by the secretion of the hormone insulin. Like many neuroendocrine cells, the coupling between insulin-secreting β-cells in the islet is critical for the dynamics of hormone secretion. We have examined how this coupling architecture regulates the electrical dynamics that underlie insulin secretion by utilizing a microwell-based aggregation method to generate clusters of a β-cell line with defined sizes and dimensions. We measured the dynamics of free-calcium activity ([Ca2+]i) and insulin secretion and compared these measurements with a percolating network model. We observed that the coupling dimension was critical for regulating [Ca2+]i dynamics and insulin secretion. Three-dimensional coupling led to size-invariant suppression of [Ca2+]i at low glucose and robust synchronized [Ca2+]i oscillations at elevated glucose, whereas two-dimensional coupling showed poor suppression and less robust synchronization, with significant size-dependence. The dimension- and size-scaling of [Ca2+]i at high and low glucose could be accurately described with the percolating network model, using similar network connectivity. As such this could explain the fundamentally different behavior and size-scaling observed under each coupling dimension. This study highlights the dependence of proper β-cell function on the coupling architecture that will be important for developing therapeutic treatments for diabetes such as islet transplantation techniques. Furthermore, this will be vital to gain a better understanding of the general features by which cellular interactions regulate coupled multicellular systems.  相似文献   

9.
The Ca(2+)- and calmodulin-dependent phosphatase calcineurin was reported to interact with the inositol 1,4,5-trisphosphate receptor (IP(3)R) and the ryanodine receptor (RyR) and to modulate their phosphorylation status and activity. However, controversial data on the molecular mechanisms involved and on the functional relevance of calcineurin for these channel-complexes have been described. Hence, we will focus on the functional importance of calcineurin for IP(3)R and RyR function and on the different mechanisms by which Ca(2+)-dependent dephosphorylation can affect the gating of those intracellular Ca(2+)-release channels. Since many studies made use of immunosuppressive drugs that are inhibiting calcineurin activity, we will also have to take the different side effects of these drugs into account for the proper interpretation of the effects of calcineurin on intracellular Ca(2+)-release channels. In addition, it became recently known that various other phosphatases and kinases can associate with these channels, thereby forming macromolecular complexes. The relevance of these enzymes for IP(3)R and RyR functioning will be reviewed since in some cases they could interfere with the effects ascribed to calcineurin. Finally, we will discuss the downstream effects of calcineurin on the regulation of the expression levels of intracellular Ca(2+)-release channels as well as the relation between IP(3)R- and RyR-mediated Ca(2+) release and calcineurin-dependent gene expression.  相似文献   

10.
Recent studies have revealed that beta-cell dysfunction is an important factor in developing type 2 diabetes. beta-cell dysfunction is related to impairment of the insulin/IGF-1 signaling cascade through insulin receptor substrate-2 (IRS2). The induction of IRS2 in beta-cells plays an important role in potentiating beta-cell function and mass. In this study, we investigated whether herbs used for treating diabetes in Chinese medicine-Galla rhois, Rehmanniae radix, Machilus bark, Ginseng radix, Polygonatum radix, and Scutellariae radix-improved IRS2 induction in rat islets, glucose-stimulated insulin secretion and beta-cell survival. R. radix, Ginseng radix and S. radix significantly enhanced glucose-stimulated insulin secretion compared to the control, i.e., by 49, 67 and 58%, respectively. These herbs induced the expression of IRS2, pancreas duodenum homeobox-1 (PDX-1), and glucokinase. The increased level of glucokinase could explain the enhancement of glucose-stimulated insulin secretion with these extracts. Increased PDX-1 expression was associated with beta-cell proliferation, which was consistent with the cell viability assay. In conclusion, R. radix, Ginseng radix and S. radix had an insulinotropic action similar to that of exendin-4.  相似文献   

11.
Based on recently determined ionic channel properties, a simple theoretical model for the burst activity of the pancreatic β-cell is formulated in this paper. The model contains an inward voltage-activated Ca2+ current which is inactivated by intracellular calcium ions and an outward K+ current that is activated by the membrane potential. The probability of opening of the channel gates is represented by Boltzmann equations. Our model is applicable in a regime where an ATP-blockable K+ channel is inhibited. In this regime, glucose is treated as an activator for the rate of efflux of intracellular Ca2+ ions, and hence its effect is equated tok Ca, the efflux rate constant. In addition, intracellular H+ ion, which is a byproduct of the glycolytic metabolic process, is treated as a competitive inhibitor for Ca2+ ion. Since H+ is a competitive inhibitor (according to our assumption), its effect is equated to the strength of the Cai dissociation constantK h. In the model, a Ca2+ binding site is assumed to exist in the inner membrane of the voltage-gated Ca2+ channel. The model predicts that a spike and burst electrical pattern can be generated by varyingk ca and that a given pattern may produce different levels of intracellular Ca2+ depending onK h. In other words, it predicts that levels of [Ca2+]i can be separated from the electrical activity by controlling the concentration of glucose and pH appropriately. This may account for the experimental observation of Lebrun et al. (1985) that insulin secretion is not correlated to the burst of electrical activity.  相似文献   

12.
Mitochondria play a central role in glucose metabolism and the stimulation of insulin secretion from pancreatic β-cells. In this review, we discuss firstly the regulation and roles of mitochondrial Ca2+ transport in glucose-regulated insulin secretion, and the molecular machinery involved. Next, we discuss the evidence that mitochondrial dysfunction in β-cells is associated with type 2 diabetes, from a genetic, functional and structural point of view, and then the possibility that these changes may in part be mediated by dysregulation of cytosolic Ca2+. Finally, we review the importance of preserved mitochondrial structure and dynamics for mitochondrial gene expression and their possible relevance to the pathogenesis of type 2 diabetes.  相似文献   

13.
Mast cells play a primary role in allergic diseases. During an allergic reaction, mast cell activation is initiated by cross-linking IgE-FcεRI complex by multivalent antigen resulting in degranulation. Additionally, G protein-coupled receptors also induce degranulation upon activation. However, the spatio-temporal relationship between Ca2+ mobilization and mast cell degranulation is not well understood. We investigated the relationship between oscillations in Ca2+ level and mast cell degranulation upon stimulation in rat RBL-2H3 cells. Nile red and Fluo-4 were used as probes for monitoring histamine and intracellular Ca2+ levels, respectively. Histamine release and Ca2+ oscillations in real-time were monitored using total internal reflection fluorescence microscopy (TIRFM). Mast cell degranulation followed immediately after FcεRI and GPCR-mediated Ca2+ increase. FcεRI-induced Ca2+ increase was higher and more sustained than that induced by GPCRs. However, no significant difference in mast cell degranulation rates was observed. Although intracellular Ca2+ release was both necessary and sufficient for mast cell degranulation, extracellular Ca2+ influx enhanced the process. Furthermore, cytosolic Ca2+ levels and mast cell degranulation were significantly decreased by downregulation of store-operated Ca2+ entry (SOCE) via Orai1 knockdown, 2-aminoethyl diphenylborinate (2-APB) or tubastatin A (TSA) treatment. Collectively, this study has demonstrated the role of Ca2+ signaling in regulating histamine degranulation.  相似文献   

14.
15.
Numerous studies have demonstrated the effects of Tβ4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which Tβ4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with Tβ4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that Tβ4 interacts with Ku80, which may operate as a novel receptor for Tβ4 and mediates its intracellular activity. In this paper, we provide evidence that Tβ4 induces cellular processes without changes in the intracellular Ca(2+) concentration. External treatment of HUVECs with Tβ4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (Tβ4(AcSDKPT/4A)) or the actin-binding sequence KLKKTET (Tβ4(KLKKTET/7A)) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by Tβ4 was not associated with the intracellular Ca(2+) elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added Tβ4 induces HUVEC migration via the surface membrane receptors known to generate Ca(2+) influx. Our data confirm the concept that externally added Tβ4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.  相似文献   

16.
R F Irvine 《FASEB journal》1992,6(12):3085-3091
Intracellular mobilization of Ca2+ by inositol trisphosphate (IP3) is only a temporary phenomenon; the more crucial process of stimulated entry of Ca2+ by inositol phosphates is still poorly understood, with apparently conflicting data and hypotheses arising from different tissues and experimental protocols. There is clear evidence that the intracellular Ca2+ stores themselves can control Ca2+ entry and that IP3 may exert a direct effect on Ca2+ entry over and above its function in emptying those stores. There is also clear evidence that inositol tetrakisphosphate (IP4) can control Ca2+ entry, but there is controversy over whether it is actually necessary. Thus at present the combined evidence suggests that there must be a multiplicity of mechanisms extant, with different mechanisms being emphasized in different tissues. Alternatively, there could be one common mechanism, discussed here, which may lead to apparently different emphases as a result of the various experimental protocols.  相似文献   

17.
Exposure to La3+ has been proposed as a tool for discriminating between superficially and intracellularly located 45Ca. Two different pools of glucose-stimulated 45Ca were identified in β-cell-rich pancreatic islets microdissected from ob/ob mice using a standard procedure of washing with 2 mM La3+ at 37°C. The results were not critically dependent on the concentration of La3+ within a range of 1–20 mM. However, the distribution of 45Ca was markedly influenced by the temperature of the washing medium. Reduction of the temperature to 1°C abolished the glucose effect on the La3+-displaceable 45Ca and considerably increased the amounts of 45Ca not displaceable with La3+. Separate studies in a perifusion system revealed that La3+ in itself was less effective than temperature reduction in depressing the efflux of 45Ca from the isolated islets. The data indicate that washing in cold La3+ solution gives a better estimate of the intracellular islet calcium than the original procedure. It is suggested that the glucose-stimulated part of the 45Ca, which is displaced by washing with La2+ at 37°C, is derived from the interior of the β-cells.  相似文献   

18.
Kim JK  Choi JW  Lim S  Kwon O  Seo JK  Ryu SH  Suh PG 《Cellular signalling》2011,23(6):1022-1029
Phospholipase C-η1 (PLC-η1) is the most recently identified PLC isotype and is primarily expressed in nerve tissue. However, its functional role is unclear. In the present study, we report for the first time that PLC-η1 acts as a signal amplifier in G protein-coupled receptor (GPCR)-mediated PLC and Ca2+ signaling. Short-hairpin RNA (shRNA)-mediated knockdown of endogenous PLC-η1 reduced lysophosphatidic acid (LPA)-, bradykinin (BK)-, and PACAP-induced PLC activity in mouse neuroblastoma Neuro2A (N2A) cells, indicating that PLC-η1 participates in GPCR-mediated PLC activation. Interestingly, ionomycin-induced PLC activity was significantly decreased by PLC-η1, but not PLC-η2, knockdown. In addition, we found that intracellular Ca2+ source is enough for PLC-η1 activation. Furthermore, the IP3 receptor inhibitor, 2-APB, inhibited LPA-induced PLC activity in control N2A cells, whereas this effect was not observed in PLC-η1 knockdown N2A cells, suggesting a pivotal role of intracellular Ca2+ mobilization in PLC-η1 activation. Finally, we found that LPA-induced ERK1/2 phosphorylation and expression of the downstream target gene, krox-24, were significantly decreased by PLC-η1 knockdown, and these knockdown effects were abolished by 2-APB. Taken together, our results strongly suggest that PLC-η1 is activated via intracellular Ca2+ mobilization from the ER, and therefore amplifies GPCR-mediated signaling.  相似文献   

19.
The emergence of bihormonal (BH) cells expressing insulin and glucagon has been reported under diabetic conditions in humans and mice. Whereas lineage tracing studies demonstrated that glucagon-producing α cells can be reprogrammed into BH cells, the underlying dynamics of the conversion process remain poorly understood. In the present study, we investigated the identities of pancreatic endocrine cells by genetic lineage tracing under diabetic conditions. When β-cell ablation was induced by alloxan (ALX), a time-dependent increase in BH cells was subsequently observed. Lineage tracing experiments demonstrated that BH cells originate from α cells, but not from β cells, in ALX-induced diabetic mice. Notably, supplemental insulin administration into diabetic mice resulted in a significant increase in α-cell-derived insulin-producing cells that did not express glucagon. Furthermore, lineage tracing in Ins2Akita diabetic mice demonstrated a significant induction of α-to-β conversion. Thus, adult α cells have plasticity, which enables them to be reprogrammed into insulin-producing cells under diabetic conditions, and this can be modulated by supplemental insulin administration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号