首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A novel chitinase gene (PtChiA) from the thermophilic fungus Paecilomyces thermophila was cloned and expressed in Escherichia coli as an intracellular soluble protein. The gene sequence alignment indicates that PtChiA belongs to glycoside hydrolase (GH) family 18 and has an open reading frame comprising of 1473 bp nucleotide sequences with five introns. PtChiA encodes 400 amino acids without any predicted signal peptide. PtChiA was purified by Ni-IDA chromatography. It displayed an acidic optimum pH of 4.5 and broad pH stability (pH 4.0-10.5). The enzyme exhibited an optimal temperature of 50°C and was stable up to 40°C. PtChiA was strongly inhibited by anionic detergent SDS, and also by metal ions Hg(2+) and Mn(2+). It did not exhibit any antifungal activity against pathogenic fungi. It has the ability to hydrolyze colloidal chitin into chito-oligomers suggesting its use in conversion of chitin waste into chito-oligosaccharides.  相似文献   

2.
张婕  谢晨  郭晓红  李多川 《菌物学报》2010,29(5):691-697
研究通过RT-PCR和Tail-PCR技术从嗜热子囊菌原变种Thermoascus aurantiacus var.aurantiacus中克隆了一个几丁质酶同源基因。该基因全长1,253bp,包含一个由1,197个碱基构成的开放阅读框,编码398个氨基酸。序列比对分析表明,该基因编码蛋白属于糖苷水解酶18家族的几丁质酶。利用基因重组的方法构建酵母分泌型表达载体,并转化毕赤酵母。在甲醇的诱导下,重组蛋白得到了高效表达,第6天的表达量最高,达到0.433g/L,酶活力为28.96U/mg,同时对表达的几丁质酶进行了纯化,SDS-PAGE检测该蛋白的分子量为43.9kDa。该几丁质酶的最适反应温度为60℃,最适反应pH值为8.0,70℃处理30min仍有45%的相对酶活,具有较好的热稳定性及工业应用价值。  相似文献   

3.
The pchA gene encoding chitinase A (PchA) from a Pythium porphyrae cell-wall-degrading marine bacterium, Pseudomonas sp. PE2, was cloned and characterized. The deduced PchA was a modular enzyme composed of an N-terminal signal peptide, a glycoside hydrolase family 18 catalytic domain that was responsible for the chitinase activity, the chitin-binding domains (ChBDs), and the carbohydrate-binding modules (CBM). The amino acid sequence of ChBD(PchA) was highly conserved in the CBM family 12 that also accommodates ChBDs without an AKWWTQG motif, a domain commonly found in bacterial chitinase and Streptomyces griseus protease C. Interestingly, CBM(PchA) showed significant sequence homology to the C-terminal region of endoglucanase B from Cellvibrio mixtus, which is a member of CBM family 6. This is the first report of a chitinase possessing a domain with high similarity to CBM family 6. Deletion analysis indicated clearly that ChBD(PchA) might play an important role in the binding of native chitin and chitosan, but not processed chitin. CBM(PchA) also appeared to play such a role in the binding of xylan and Avicel. These results suggest that the C-terminal region of PchA might be a key component in the binding of chitin in the cell walls of P. porphyrae or other structural components of marine organisms.  相似文献   

4.
The chitinase gene was molecularly characterized in five Bacillus thuringiensis Mexican isolates, MR10, MR11, MR21, MR33, and RN52. The proteins derived from these genes were tested for their chitinase activity using fluorogenic chitin derivatives. In order to verify if chitinase genes were functional, they were cloned, and enzymatic activity of recombinant chitinases was also tested. Results indicated that enzymes exhibited endochitinase activity. The highest hydrolytic activity shown against the chitin tetrameric derivative occurred at pH value of 6.5, and the optimum activity temperature was around 60 °C. The recombinant endochitinases showed a molecular mass of ~77 kDa with isoelectric points from 6.5 to 7.0. Analysis of the nucleotide sequences showed highly conserved sequences among all isolates (97–99 %). Gene sequence analysis revealed a putative promoter (?35 TTGAGA and ?10 TTAATA) and a Shine–Dalgarno sequence (5´-AGGAGA-3´) upstream from the open reading frame. The deduced amino acid sequence revealed that the proteins are modular enzymes composed by a family 18 glycosyl hydrolase domain located between amino acids 134 and 549, a fibronectin-binding domain (580 through 656), and a chitin-binding domain (664 through 771). The deduced amino acid sequences of our isolates showed a similarity close to 100 % respect to the sequences reported in the GenBank database.  相似文献   

5.
Sulfolobus solfataricus is an aerobic crenarchaeon that thrives in acidic volcanic pools. In this study, we have purified and characterized a thermostable alpha-galactosidase from cell extracts of S. solfataricus P2 grown on the trisaccharide raffinose. The enzyme, designated GalS, is highly specific for alpha-linked galactosides, which are optimally hydrolyzed at pH 5 and 90 degrees C. The protein consists of 74.7-kDa subunits and has been identified as the gene product of open reading frame Sso3127. Its primary sequence is most related to plant enzymes of glycoside hydrolase family 36, which are involved in the synthesis and degradation of raffinose and stachyose. Both the galS gene from S. solfataricus P2 and an orthologous gene from Sulfolobus tokodaii have been cloned and functionally expressed in Escherichia coli, and their activity was confirmed. At present, these Sulfolobus enzymes not only constitute a distinct type of thermostable alpha-galactosidases within glycoside hydrolase clan D but also represent the first members from the Archaea.  相似文献   

6.
A chitinase gene was cloned on a 2.8-kb DNA fragment from Stenotrophomonas maltophilia strain 34S1 by heterologous expression in Burkholderia cepacia. Sequence analysis of this fragment identified an open reading frame encoding a deduced protein of 700 amino acids. Removal of the signal peptide sequence resulted in a predicted protein that was 68 kDa in size. Analysis of the sequence indicated that the chitinase contained a catalytic domain belonging to family 18 of glycosyl hydrolases. Three putative binding domains, a chitin binding domain, a novel polycystic kidney disease (PKD) domain, and a fibronectin type III domain, were also identified within the sequence. Pairwise comparisons of each domain to the most closely related sequences found in database searches clearly demonstrated variation in gene sources and the species from which related sequences originated. A 51-kDa protein with chitinolytic activity was purified from culture filtrates of S. maltophilia strain 34S1 by hydrophobic interaction chromatography. Although the protein was significantly smaller than the size predicted from the sequence, the N-terminal sequence verified that the first 15 amino acids were identical to the deduced sequence of the mature protein encoded by chiA. Marker exchange mutagenesis of chiA resulted in mutant strain C5, which was devoid of chitinolytic activity and lacked the 51-kDa protein in culture filtrates. Strain C5 was also reduced in the ability to suppress summer patch disease on Kentucky bluegrass, supporting a role for the enzyme in the biocontrol activity of S. maltophilia.  相似文献   

7.
A family 18 chitinase gene chiA from the thermophile Rhodothermus marinus was cloned and expressed in Escherichia coli. The gene consisted of an open reading frame of 1,131 nucleotides encoding a protein of 377 amino acids with a calculated molecular weight of 42,341 Da. The deduced ChiA was a non-modular enzyme with one unique glycoside hydrolase family 18 catalytic domain. The catalytic domain exhibited 43% amino acid identity with Bacillus circulans chitinase C. Due to poor expression of ChiA, a signal peptide-lacking mutant, chiAsp, was designed and used subsequently. The optimal temperature and pH for chitinase activity of both ChiA and ChiAsp were 70°C and 4.5–5, respectively. The enzyme maintained 100% activity after 16 h incubation at 70°C, with half-lives of 3 h at 90°C and 45 min at 95°C. Results of activity measurements with chromogenic substrates, thin-layer chromatography, and viscosity measurements demonstrated that the chitinase is an endoacting enzyme releasing chitobiose as a major end product, although it acted as an exochitobiohydrolase with chitin oligomers shorter than five residues. The enzyme was fully inhibited by 5 mM HgCl2, but excess ethylenediamine tetraacetic acid relieved completely the inhibition. The enzyme hydrolyzed 73% deacetylated chitosan, offering an attractive alternative for enzymatic production of chitooligosaccharides at high temperature and low pH. Our results show that the R. marinus chitinase is the most thermostable family 18 chitinase isolated from Bacteria so far.  相似文献   

8.
Chitinases (EC 3.2.1.14), as one kind of glycosyl hydrolase, hydrolyze the β‐(1,4) linkages of chitin. According to the sequence similarity, chitinases can be divided into glycoside hydrolase family 18 and family 19. Here, a chitinase from Nosema bombycis (NbchiA) was cloned and purified by metal affinity chromatography and molecular exclusion chromatography. Sequence analysis indicated that NbchiA belongs to glycoside hydrolase family 19 class IV chitinase. The optimal pH and temperature of NbchiA are 7.0 and 40 °C, respectively. This purified chitinase showed high activity toward soluble substrates such as ethylene glycol chitin and soluble chitosan. The degradation of chitin oligosaccharides (GlcNAc)2–5 detected by high‐performance liquid chromatography showed that NbchiA hydrolyzed mainly the second glycosidic linkage from the reducing end of (GlcNAc)3‐5. On the basis of structure‐based multiple‐sequence alignment, Glu51 and Glu60 are believed to be the key catalytic residues. The site‐directed mutation analysis revealed that the enzymatic activity was decreased upon mutation of Glu60, whereas mutation of Glu51 totally abolished the enzymatic activity. This is the first report of a GH19 chitinase in fungi and in Microsporidia.  相似文献   

9.
A chitinase gene was cloned on a 2.8-kb DNA fragment from Stenotrophomonas maltophilia strain 34S1 by heterologous expression in Burkholderia cepacia. Sequence analysis of this fragment identified an open reading frame encoding a deduced protein of 700 amino acids. Removal of the signal peptide sequence resulted in a predicted protein that was 68 kDa in size. Analysis of the sequence indicated that the chitinase contained a catalytic domain belonging to family 18 of glycosyl hydrolases. Three putative binding domains, a chitin binding domain, a novel polycystic kidney disease (PKD) domain, and a fibronectin type III domain, were also identified within the sequence. Pairwise comparisons of each domain to the most closely related sequences found in database searches clearly demonstrated variation in gene sources and the species from which related sequences originated. A 51-kDa protein with chitinolytic activity was purified from culture filtrates of S. maltophilia strain 34S1 by hydrophobic interaction chromatography. Although the protein was significantly smaller than the size predicted from the sequence, the N-terminal sequence verified that the first 15 amino acids were identical to the deduced sequence of the mature protein encoded by chiA. Marker exchange mutagenesis of chiA resulted in mutant strain C5, which was devoid of chitinolytic activity and lacked the 51-kDa protein in culture filtrates. Strain C5 was also reduced in the ability to suppress summer patch disease on Kentucky bluegrass, supporting a role for the enzyme in the biocontrol activity of S. maltophilia.  相似文献   

10.
一株Sanguibacter sp.C4产几丁质酶基因的克隆与表达   总被引:1,自引:0,他引:1  
陶勇  金虹  龙章富  张丽  丁秀琼  陶科  刘世贵 《遗传学报》2006,33(11):1037-1046
Chi58是Sanguibacter sp.strain C4产生的一种胞外几丁质酶。通过chiA的特异性PCR引物探测到菌株C4中存在几丁质酶,并将扩增到的几丁质酶基因片段(chiA-F)克隆、测序后,提交GenBank数据库进行同源性搜索。对从GenBank中获得的高同源性序列进行比对,并根据保守区域设计2对PCR引物进行嵌套PCR,扩增出Chi58基因的开放阅读框(ORF)。测序结果表明该酶的ORF由1692个核苷酸组成,编码563个氨基酸,在N端有23个氨基酸的信号肽,其成熟蛋白的分子量应为58.544kDa。对其推导氨基酸的序列分析表明Chi58与沙雷氏菌的几丁质酶(如徂)有高度同源性(88.9%-99.6%),其结构主要包括信号肽序列、PKD结构域和18家族糖苷水解酶结构域。将该基因克隆到pET32a(+)载体构建重组质粒pChi58,转入大肠杆菌BL-21(DE3)进行融合表达。经IPTG诱导后,可见分子量约81.1kDa的融合蛋白的表达。  相似文献   

11.
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using lambda DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a lambda DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.  相似文献   

12.
We provide evidence that chitinase A from Vibrio carchariae acts as an endochitinase. The chitinase A gene isolated from V. carchariae genome encodes 850 amino acids expressing a 95-kDa precursor. Peptide masses of the native enzyme identified from MALDI-TOF or nanoESIMS were identical with the putative amino acid sequence translated from the corresponding nucleotide sequence. The enzyme has a highly conserved catalytic TIM-barrel region as previously described for Serratia marcescens ChiA. The Mr of the native chitinase A was determined to be 62,698, suggesting that the C-terminal proteolytic cleavage site was located between R597 and K598. The DNA fragment that encodes the processed enzyme was subsequently cloned and expressed in Escherichia coli. The expressed protein exhibited chitinase activity on gel activity assay. Analysis of chitin hydrolysis using HPLC/ESI-MS confirmed the endo characteristics of the enzyme.  相似文献   

13.
A 40 kDa chitinase from Streptomyces roseolus DH was purified to homogeneity from culture medium. The N-terminal sequence was TPPPAKAVKLGYFTNWGVYG, which was highly homologous to the glycoside hydrolase (GH) 18 conserved domain of Streptomyces chitinases and included the two crucial Trp and Tyr sites. The purified enzyme showed maximal activity at 60 °C, pH 6.0 and exhibited good thermal and pH stabilities. The enzyme displayed strict substrate specificity on colloidal or glycol chitin, but not on chitosan derivatives. It was activated by Mg2+, Ba2+ and Ca2+, and inhibited by Cu2+, Co2+, Mn2+, whereas Zn2+ and ethylenediamine tetraacetic acid showed little inhibitory effects. Morphological changes observed by scanning electron microscopy revealed the occurrence of regular pores on the surface with the progress of enzymatic chitinolysis. Additionally, this GH-18 chitinase had a marked inhibitory effect on fungal hyphal extensions. In conclusion, this chitinase may have great potential for the enzymatic degradation of chitin.  相似文献   

14.
The chitinase gene (chiA71) from Bacillus thuringiensis subsp. pakistani consists of an open reading frame of 1,905 nucleotides encoding 635 amino acid residues with an estimated molecular mass of 71 kDa. Comparison of the deduced amino acid sequence of the mature enzyme to other microbial chitinases shows a putative catalytic domain and a region with conserved amino acids similar to that of the type III module of fibronectin and a chitin-binding domain. By activity detection of chitinase on SDS-PAGE after renaturation, the molecular mass of protein bands with chitinase activity were 66, 60, 47, and 32 kDa. The N-terminal amino acid sequence of each chitinase activity band was the same (Asp-Ser-Pro-Lys-Gln), suggesting that the 60-, 47-, and 32-kDa chitinases were derived from the 66-kDa chitinase by processing step(s) at the C-terminus. The enzyme was identified as an exochitinase, since it generated N-acetylglucosamine from early stage of colloidal chitin hydrolysis. The crude protein (2.3-18.4 mg/ml), containing chitinase at final activities of 8, 16, 32, and 64 mU/ml, was toxic to Aedes aegypti larvae and caused mortalities of 7.5, 15.0, 51.3, and 70.0% respectively, but the same amount of crude protein from a B. thuringiensis subsp. pakistani mutant lacking chitinase was not toxic.  相似文献   

15.
AIMS: The present work aims to study a new chitinase from Bacillus thuringiensis subsp. kurstaki. METHODS AND RESULTS: BUPM255 is a chitinase-producing strain of B. thuringiensis, characterized by its high chitinolytic and antifungal activities. The cloning and sequencing of the corresponding gene named chi255 showed an open reading frame of 2031 bp, encoding a 676 amino acid residue protein. Both nucleotide and amino acid sequences similarity analyses revealed that the chi255 is a new chitinase gene, presenting several differences from the published chi genes of B. thuringiensis. The identification of chitin hydrolysis products resulting from the activity, exhibited by Chi255 through heterologous expression in Escherichia coli revealed that this enzyme is a chitobiosidase. CONCLUSIONS: Another chitinase named Chi255 belonging to chitobiosidase class was evidenced in B. thuringiensis subsp. kurstaki and was shown to present several differences in its amino acid sequence with those of published ones. The functionality of Chi255 was proved by the heterologous expression of chi255 in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of the sequence of chi255 to the few sequenced B. thuringiensis chi genes might contribute to a better investigation of the chitinase 'structure-function' relation.  相似文献   

16.
KA-prep, a culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune, has an activity to form protoplasts from S. commune mycelia. alpha-1,3-Glucanase, which was isolated from an ammonium sulfate fraction of 0-30% saturation of KA-prep, gave the protoplast-forming activity to an ammonium sulfate fraction of 30-50% saturation of KA-prep, which contained chitinase(s) and beta-glucanase(s) but was inactive in the protoplast formation. Chitinase(s) and beta-glucanase(s) in the ammonium sulfate fraction of 30-50% saturation were separated by DEAE-cellulofine A-500 column chromatography, and the protoplast-forming activity appeared when the chitinase preparation was mixed with the alpha-1,3-glucanase. The beta-glucanase preparation was not effective for the protoplast formation whereas its addition enhanced the protoplast-forming activity of the mixture of alpha-1,3-glucanase and the chitinase preparation. The chitinase preparation contained two chitinases (chitinase I and II). Chitinase I showed the protoplast-forming activity with alpha-1,3-glucanase, but chitinase II did not. Chitinase I, a monomeric protein with a molecular weight of 41,000, was active toward colloidal chitin and ethylene glycol chitin. Chitinase I produced predominantly N,N'-diacetylchitobiose and N,N',N"-triacetylchitotriose from colloidal chitin, and the enzyme was inactive to p-NP-beta-D-N-acetylglucosaminide, suggesting that it was an endo-type enzyme. The N-terminal amino acid sequence of chitinase I (A L A T P T L N V S A S S G M) had no sequential identity to those of known chitinases.  相似文献   

17.
Paenibacillus sp. strain FPU-7 produces several different chitinases and effectively hydrolyzes robust chitin. Among the P. FPU-7 chitinases, ChiW, a novel monomeric chitinase with a molecular mass of 150?kDa, is expressed as a cell surface molecule. Here, we report that active ChiW lacking the anchoring domains in the N-terminus was successfully overproduced in Escherichia coli and purified to homogeneity. The two catalytic domains at the C-terminal region were classified as typical glycoside hydrolase family 18 chitinases, whereas the N-terminal region showed no sequence similarity to other known proteins. The vacuum-ultraviolet circular dichroism spectrum of the enzyme strongly suggested the presence of a β-stranded-rich structure in the N-terminus. Its biochemical properties were also characterized. Various insoluble chitins were hydrolyzed to N,N’-diacetyl-D-chitobiose as the final product. Based on amino acid sequence similarities and site-directed mutagenesis, Glu691 and Glu1177 in the two GH-18 domains were identified as catalytic residues.  相似文献   

18.
The digestive enzyme chitinase degrades chitin, and is found in a wide range of organisms, from prokaryotes to eukaryotes. Although mammals cannot synthesize or assimilate chitin, several proteins of the glycoside hydrolase (GH) chitinase family GH18, including some with enzymatic activity, have recently been identified from mammalian genomes. Consequently, there is growing interest in molecular evolution of this family of proteins. Here we report on the use of maximum likelihood methods to test for evidence of positive selection in three genes of the chitinase family GH18, all of which are found in mammals. These focal genes are CHIA, CHIT1 and CHI3L1, which encode the chitinase proteins acidic mammalian chitinase, chitotriosidase and cartilage protein 39, respectively. The results of our analyses indicate that each of these genes has undergone independent selective pressure in their evolution. Additionally, we have found evidence of a signature of positive natural selection, with most sites identified as being subject to adaptive evolution located in the catalytic domain. Our results suggest that positive selection on these genes stems from their function in digestion and/or immunity.  相似文献   

19.
The gene encoding chitinase from Streptomyces sp. (strain J-13-3) was cloned and its nucleotide structure was analyzed. The chitinase consisted of 298 amino acids containing a signal peptides (29 amino acids) and a mature protein (269 amino acids), and had calculated molecular mass of 31,081 Da. The calculated molecular mass (28,229 Da) of the mature protein was almost same as that of the native chitinase determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometer. Comparison of the encoded amino acid sequences with those of other chitinases showed that J-13-3 chitinase was a member of the glycosyl-hydrolase family 19 chitinases and the mature protein had a chitin binding domain (65 amino acids) containing AKWWTQ motif and a catalytic domain (204 amino acids). The J-13-3 strain had a single chitinase gene. The chitinase (298 amino acids) with C-terminal His tag was overexpressed in Escherichia coli BL21(DE3) cells. The recombinant chitinase purified from the cell extract had identical N-terminal amino acid sequence of the mature protein in spite of confirmation of the nucleotide sequence, suggesting that the signal peptide sequence is successfully cut off at the predicted site by signal peptidase from E. coli and will be a useful genetic tool in protein engineering for production of soluble recombinant protein. The optimum temperature and pH ranges of the purified chitinase were at 35-40 degrees C and 5.5-6.0, respectively. The purified chitinase hydrolyzed colloidal chitin and trimer to hexamer of N-acetylglucosamine and also inhibited the hyphal extension of Tricoderma reesei.  相似文献   

20.
An approximately 60-kDa protein with chitinase activity was purified from the pancreas of the toad Bufo japonicus. Its specific activity was 4.5 times higher than that of a commercial bacterial chitinase in fragmenting crab shell chitin, and its optimal pH was approximately 6.0. A cDNA clone encoding a protein consisting of 488 amino acid residues, including part of the peptide sequence determined from the isolated protein, was obtained from a toad pancreas cDNA library. The deduced amino acid sequence indicated that the protein contained regions with high homology to those present in chitinases from different species, with the amino acid residues for the chitinase activity and the chitin-binding ability being completely conserved. We designate the protein as toad pancreatic chitinase (tPCase). Northern blot analysis revealed the mRNA of this enzyme to be expressed exclusively in the pancreas. Toad PCase is the first amphibian chitinase to be identified as well as the first pancreatic chitinase identified in a vertebrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号