首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Posterior leaflet prolapse following chordal elongation or rupture is one of the primary valvular diseases in patients with degenerative mitral valves (MVs). Quadrangular resection followed by ring annuloplasty is a reliable and reproducible surgical repair technique for treatment of posterior leaflet prolapse. Virtual MV repair simulation of leaflet resection in association with patient-specific 3D echocardiographic data can provide quantitative biomechanical and physiologic characteristics of pre- and post-resection MV function. We have developed a solid personalized computational simulation protocol to perform virtual MV repair using standard clinical guidelines of posterior leaflet resection with annuloplasty ring implantation. A virtual MV model was created using 3D echocardiographic data of a patient with posterior chordal rupture and severe mitral regurgitation. A quadrangle-shaped leaflet portion in the prolapsed posterior leaflet was removed, and virtual plication and suturing were performed. An annuloplasty ring of proper size was reconstructed and virtual ring annuloplasty was performed by superimposing the ring and the mitral annulus. Following the quadrangular resection and ring annuloplasty simulations, patient-specific annular motion and physiologic transvalvular pressure gradient were implemented and dynamic finite element simulation of MV function was performed. The pre-resection MV demonstrated a substantial lack of leaflet coaptation which directly correlated with the severe mitral regurgitation. Excessive stress concentration was found along the free marginal edge of the posterior leaflet involving the chordal rupture. Following the virtual resection and ring annuloplasty, the severity of the posterior leaflet prolapse markedly decreased. Excessive stress concentration disappeared over both anterior and posterior leaflets, and complete leaflet coaptation was effectively restored. This novel personalized virtual MV repair strategy has great potential to help with preoperative selection of the patient-specific optimal MV repair techniques, allow innovative surgical planning to expect improved efficacy of MV repair with more predictable outcomes, and ultimately provide more effective medical care for the patient.  相似文献   

2.
Mitral valve (MV) annulus mechanics and its effect on annulus dilatation are not well understood. The objective of the current study was to understand annulus tension (AT) during valve closure. A porcine MV rested on top of annulus rings with papillary muscles (PMs) held at slack, normal and taut conditions. The annulus was held by strings in the periphery during valve closure under static trans-mitral pressures. String tensions were measured and further used to calculate the anterior and posterior ATs. Three rings of different sizes were used to simulate normal and dilatated annuli. Fourteen MVs were tested. The anterior ATs were 37.21+/-11.03, 53.86+/-14.98 and 58.87+/-15.72N/m, respectively, at the slack, normal and taut PM positions in the normal annulus at the trans-mitral pressure of 16.3kPa (122mmHg). The posterior ATs were 24.52+/-5.68, 36.29+/-8.89 and 42.32+/-11.82N/m, respectively, at the slack, normal and taut PM positions in the normal annulus at the trans-mitral pressure of 16.3kPa (122mmHg). AT increased as the PM changed from slack to normal, then to taut PM positions. The AT increases with the increase of annulus area and linearly with the increase of trans-mitral pressure. The AT increases with the increases of apical PM displacement and dilatated annulus area, and reduces the potential of annulus dilatation. Low trans-mitral pressure due to existent mitral regurgitation, and MV prolapse increase the potential of annulus dilatation.  相似文献   

3.
Computational models for the heart's mitral valve (MV) exhibit several uncertainties that may be reduced by further developing these models using ground-truth data-sets. This study generated a ground-truth data-set by quantifying the effects of isolated mitral annular flattening, symmetric annular dilatation, symmetric papillary muscle (PM) displacement and asymmetric PM displacement on leaflet coaptation, mitral regurgitation (MR) and anterior leaflet strain. MVs were mounted in an in vitro left heart simulator and tested under pulsatile haemodynamics. Mitral leaflet coaptation length, coaptation depth, tenting area, MR volume, MR jet direction and anterior leaflet strain in the radial and circumferential directions were successfully quantified at increasing levels of geometric distortion. From these data, increase in the levels of isolated PM displacement resulted in the greatest mean change in coaptation depth (70% increase), tenting area (150% increase) and radial leaflet strain (37% increase) while annular dilatation resulted in the largest mean change in coaptation length (50% decrease) and regurgitation volume (134% increase). Regurgitant jets were centrally located for symmetric annular dilatation and symmetric PM displacement. Asymmetric PM displacement resulted in asymmetrically directed jets. Peak changes in anterior leaflet strain in the circumferential direction were smaller and exhibited non-significant differences across the tested conditions. When used together, this ground-truth data-set may be used to parametrically evaluate and develop modelling assumptions for both the MV leaflets and subvalvular apparatus. This novel data may improve MV computational models and provide a platform for the development of future surgical planning tools.  相似文献   

4.
Knowledge of mitral valve (MV) mechanics is essential for the understanding of normal MV function, and the design and evaluation of new surgical repair procedures. In the present study, we extended our investigation of MV dynamic strain behavior to quantify the dynamic strain on the central region of the posterior leaflet. Native porcine MVs were mounted in an in-vitro physiologic flow loop. The papillary muscle (PM) positions were set to the normal, taut, and slack states to simulate physiological and pathological PM positions. Leaflet deformation was measured by tracking the displacements of 16 small markers placed in the central region of the posterior leaflet. Local leaflet tissue strain and strain rates were calculated from the measured displacements under dynamic loading conditions. A total of 18 mitral valves were studied. Our findings indicated the following: (1) There was a rapid rise in posterior leaflet strain during valve closure followed by a plateau where no additional strain (i.e., no creep) occurred. (2) The strain field was highly anisotropic with larger stretches and stretch rates in the radial direction. There were negligible stretches, or even compression (stretch < 1) in the circumferential direction at the beginning of valve closure. (3) The areal strain curves were similar to the stretches in the trends. The posterior leaflet showed no significant differences in either peak stretches or stretch rates during valve closure between the normal, taut, and slack PM positions. (4) As compared with the anterior leaflet, the posterior leaflet demonstrated overall lower stretch rates in the normal PM position. However, the slack and taut PM positions did not demonstrate the significant difference in the stretch rates and areal strain rates between the posterior leaflet and the anterior leaflet. The MV posterior leaflet exhibited pronounced mechanically anisotropic behavior Loading rates of the MV posterior leaflet were very high. The PM positions influenced neither peak stretch nor stretch rates in the central area of the posterior leaflet. The stretch rates and areal strain rates were significantly lower in the posterior leaflet than those measured in the anterior leaflet in the normal PM position. However, the slack and taut PM positions did not demonstrate the significant differences between the posterior leaflet and the anterior leaflet. We conclude that PM positions may influence the posterior strain in a different way as compared to the anterior leaflet.  相似文献   

5.
Left atrial muscle extends into the proximal third of the mitral valve (MV) anterior leaflet and transient tensing of this muscle has been proposed as a mechanism aiding valve closure. If such tensing occurs, regional stiffness in the proximal anterior mitral leaflet will be greater during isovolumic contraction (IVC) than isovolumic relaxation (IVR) and this regional stiffness difference will be selectively abolished by β-receptor blockade. We tested this hypothesis in the beating ovine heart. Radiopaque markers were sewn around the MV annulus and on the anterior MV leaflet in 10 sheep hearts. Four-dimensional marker coordinates were obtained from biplane videofluoroscopy before (CRTL) and after administration of esmolol (ESML). Heterogeneous finite element models of each anterior leaflet were developed using marker coordinates over matched pressures during IVC and IVR for CRTL and ESML. Leaflet displacements were simulated using measured left ventricular and atrial pressures and a response function was computed as the difference between simulated and measured displacements. Circumferential and radial elastic moduli for ANNULAR, BELLY and EDGE leaflet regions were iteratively varied until the response function reached a minimum. The stiffness values at this minimum were interpreted as the in vivo regional material properties of the anterior leaflet. For all regions and all CTRL beats IVC stiffness was 40–58% greater than IVR stiffness. ESML reduced ANNULAR IVC stiffness to ANNULAR IVR stiffness values. These results strongly implicate transient tensing of leaflet atrial muscle during IVC as the basis of the ANNULAR IVC–IVR stiffness difference.  相似文献   

6.
Annuloplasty ring repair is a common procedure for the correction of mitral valve regurgitation. Commercially available rings vary in dimensions and material properties. Annuloplasty ring suture dehiscence from the native annulus is a catastrophic yet poorly understood phenomenon that has been reported across ring types. Recognizing that sutures typically dehisce from the structurally weaker posterior annulus, our group is conducting a multi-part study in search of ring design parameters that influence forces acting on posterior annular sutures in the beating heart. Herein, we report the effect of ring rigidity on suture forces. Measurements utilized custom force sensors, attached to annuloplasty rings and implanted in normal ovine subjects via standard surgical procedure. Tested rings included the semi-rigid Physio (Edwards Lifesciences) and rigid and flexible prototypes of matching geometry. While no significant differences due to ring stiffness existed for sutures in the anterior region, posterior forces were significantly reduced with use of the flexible ring (rigid: 1.95 ± 0.96 N, semi-rigid: 1.76 ± 1.19 N, flexible: 1.04 ± 0.63 N; p < 0.001). The ratio of anterior to posterior FC scaled positively with increasing flexibility (p < 0.001), and posterior forces took more time to reach their peak load when a flexible ring was used (p < 0.001). This suggests a more rigid ring enables more rapid/complete force equilibration around the suture network, transferring higher anterior forces to the weaker posterior tissue. For mitral annuloplasties requiring ring rigidity, we propose a ring design concept to potentially disrupt this force transfer and improve suture retention.  相似文献   

7.
Three-dimensional (3-D) echocardiography allows the generation of anatomically correct and time-resolved geometric mitral valve (MV) models. However, as imaged in vivo, the MV assumes its systolic geometric configuration only when loaded. Customarily, finite element analysis (FEA) is used to predict material stress and strain fields rendered by applying a load on an initially unloaded model. Therefore, this study endeavors to provide a framework for the application of in vivo MV geometry and FEA to MV physiology, pathophysiology, and surgical repair. We hypothesize that in vivo MV geometry can be reasonably used as a surrogate for the unloaded valve in computational (FEA) simulations, yielding reasonable and meaningful stress and strain magnitudes and distributions. Three experiments were undertaken to demonstrate that the MV leaflets are relatively nondeformed during systolic loading: 1) leaflet strain in vivo was measured using sonomicrometry in an ovine model, 2) hybrid models of normal human MVs as constructed using transesophageal real-time 3-D echocardiography (rt-3DE) were repeatedly loaded using FEA, and 3) serial rt-3DE images of normal human MVs were used to construct models at end diastole and end isovolumic contraction to detect any deformation during isovolumic contraction. The average linear strain associated with isovolumic contraction was 0.02 ± 0.01, measured in vivo with sonomicrometry. Repeated loading of the hybrid normal human MV demonstrated little change in stress or geometry: peak von Mises stress changed by <4% at all locations on the anterior and posterior leaflets. Finally, the in vivo human MV deformed minimally during isovolumic contraction, as measured by the mean absolute difference calculated over the surfaces of both leaflets between serial MV models: 0.53 ± 0.19 mm. FEA modeling of MV models derived from in vivo high-resolution truly 3-D imaging is reasonable and useful for stress prediction in MV pathologies and repairs.  相似文献   

8.

Background

Atrial fibrillation (AF) can result in atrial functional mitral regurgitation (MR), but the mechanism remains controversial. Few data about the relationship between the 3-dimensional morphology of the MV and the degree of MR in AF exist.

Methods

Real-time 3-dimensional transesophageal echocardiography (3D-TEE) of the MV was acquired in 168 patients with AF (57.7% persistent AF), including 25 (14.9%) patients with moderate to severe MR (the MR+ group) and 25 patients without AF as controls. The 3-dimensional geometry of the MV apparatus was acquired using dedicated quantification software.

Results

Compared with the group of patients with no or mild MR (the MR- group) and the controls, the MR+ group had a larger left atrium (LA), a more dilated mitral annulus (MA), a reduced annular height to commissural width ratio (AHCWR), indicating flattening of the annular saddle shape, and greater leaflet surfaces and tethering. MR severity was correlated with the MA area (r2?=?0.43, P?<?0.01) and the annulus circumference (r2?=?0.38, P?<?0.01). A logistic regression analysis indicated that the MA area (OR: 1.02, 95% CI: 1.01–1.03, P?<?0.01), AHCWR (OR: 0.24, 95% CI: 0.14–0.35, P?=?0.04) and MV tenting volume (OR: 3.24, 95% CI: 1.16–9.08, P?=?0.03) were independent predictors of MR severity in AF patients.

Conclusions

The mechanisms of “atrial functional MR” are complex and include dilation of the MA, flattening of the annular saddle shape and greater leaflet tethering.
  相似文献   

9.
Mitral annular (MA) and leaflet three-dimensional (3-D) dynamics were examined after circumferential phenol ablation of the MA and anterior mitral leaflet (AML) muscle. Radiopaque markers were sutured to the left ventricle, MA, and both mitral leaflets in 18 sheep. In 10 sheep, phenol was applied circumferentially to the atrial surface of the mitral annulus and the hinge region of the AML, whereas 8 sheep served as controls. Animals were studied with biplane video fluoroscopy for computation of 3-D mitral annular area (MAA) and leaflet shape. MAA contraction (MAACont) was determined from maximum to minimum value. Presystolic MAA (PS-MAACont) reduction was calculated as the percentage of total reduction occurring before end diastole. Phenol ablation decreased PS-MAACont (72 +/- 6 vs. 47 +/- 31%, P = 0.04) and delayed valve closure (31 +/- 11 vs. 57 +/- 25 ms, P = 0.017). In control, the AML had a compound sigmoid shape; after phenol, this shape was entirely concave to the atrium during valve closure. These data indicate that myocardial fibers on the atrial side of the valve influence the 3-D dynamic geometry and shape of the MA and AML.  相似文献   

10.
To estimate frequency of the posterior mitral valve leaflet prolapse in routinely performed left ventriculography, 1000 consecutive ventriculograms of the right anterior oblique projection were analyzed. A group of patients consisted of 511 women and 489 men at mean age 46,5 years. Clinical diagnosis of heart lesions, myocardial disease, pulmonary hypertension or arrhythmias were indications for hemodynamic studies. In the investigated group of patients, there were no patients with clinical diagnosis of the coronary artery disease. Prolapse of the posterior mitral valve leaflet was diagnosed in 59 patients. Idiopathic mitral valve prolapse was diagnosed in 10 patients. Prolapse of the posterior mitral valve leaflet was most frequent in atrial septal defect (16.6%), myocardial lesion (12.5%), and after mitral commissurotomy (8.9%). Posterior mitral valve leaflet prolapse is not a frequent anomaly in routinely performed left ventriculography. Relatively often occurrence of the mitral valve prolapse in atrial septal defect and only occasional in the aortic lesions and dilated cardiomyopathy seems to point out at a role of the left ventricle size in pathogenesis of this syndrome.  相似文献   

11.
A new design for posterior leaflet resection, "butterfly resection," is proposed. It is a combination of two triangular resections in the prolapsing posterior leaflet segment. This method minimizes resection in the target segment, and it prevents systolic anterior motion by reducing the height of the posterior leaflet according to the amount of excess tissue. We have used this technique for 60.4% (29 of 48) of posterior leaflet prolapse cases with zero hospital mortality and no morbidity. Postbypass transesophageal echocardiography identified no more than mild regurgitation and no sign of systolic anterior motion. During 13.1 ± 6.8 months of follow-up, patients neither died nor needed reoperation.  相似文献   

12.
Mitral valve closure may be aided by contraction of anterior leaflet (AL) cardiac myocytes located in the annular third of the leaflet. This contraction, observed as a stiffening of the annular region of the AL during isovolumic contraction (IVC), is abolished by beta-blockade (βB). Sub-threshold rapid pacing in the region of aorto-mitral continuity (STIM) also causes AL stiffening, although this increases the stiffness of the entire leaflet during both IVC and isovolumic relaxation (IVR). We investigated whether these contractile events share a common pathway or whether multiple AL contractile mechanisms may be present. Ten sheep had radiopaque-markers implanted: 13 silhouetting the LV, 16 on the mitral annulus, an array of 16 on the AL, and one on each papillary muscle tip. 4-D marker coordinates were obtained from biplane videofluoroscopy during control (C), βB (esmolol) and during βB+STIM. Circumferential and radial stiffness values for three AL regions (Annular, Belly, and free-Edge), were obtained from inverse finite element analysis of AL displacements in response to trans-leaflet pressure changes during IVC and IVR. βB+STIM increased stiffness values in all regions at both IVC and IVR by 35 ± 7% relative to βB (p<0.001). Thus, even when AL myocyte contraction was blocked by βB, STIM stiffened all regions of the AL during both IVC and IVR. This demonstrates the presence of at least two contractile systems in the AL; one being the AL annular cardiac muscle, involving a β-dependent pathway, others via a β-independent pathway, likely involving valvular interstitial cells and/or AL smooth muscle cells.  相似文献   

13.
Mitraclip® implantation is widely used as a valid alternative to conventional open-chest surgery in high-risk patients with severe mitral valve (MV) regurgitation. Although effective in reducing mitral regurgitation (MR) in the majority of cases, the clip implantation produces a double-orifice area that can result in altered MV biomechanics, particularly in term of hemodynamics and mechanical stress distribution on the leaflets.In this scenario, we combined the consistency of in vitro experimental platforms with the versatility of numerical simulations to investigate clip impact on MV functioning. The fluid dynamic determinants of the procedure were experimentally investigated under different working conditions (from 40 bpm to 100 bpm of simulated heart rate) on six swine hearts; subsequently, fluid dynamic data served as realistic boundary conditions in a computational framework able to quantitatively assess the post-procedural MV biomechanics. The finite element model of a human mitral valve featuring an isolated posterior leaflet prolapse was reconstructed from cardiac magnetic resonance. A complete as well as a marginal, sub-optimal grasping of the leaflets were finally simulated.The clipping procedure resulted in a properly coapting valve from the geometrical perspective in all the simulated configurations. Symmetrical complete grasping resulted in symmetrical distribution of the mechanical stress, while uncomplete asymmetrical grasping resulted in higher stress distribution, particularly on the prolapsing leaflet.This work pinpointed that the mechanical stress distribution following the clipping procedure is dependent on the cardiac hemodynamics and has a correlation with the proper execution of the grasping procedure, requiring accurate evaluation prior to clip delivery.  相似文献   

14.
In vivo human mitral valves (MV) were imaged using real-time 3D transesophageal echocardiography (rt-3DTEE), and volumetric images of the MV at mid-systole were analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation, a compact representation of shape. The resulting MV models were loaded with physiologic pressures using finite element analysis (FEA). We present the regional leaflet stress distributions predicted in normal and diseased (regurgitant) MVs. Rt-3DTEE, semi-automated leaflet segmentation, 3D deformable modeling, and FEA modeling of the in vivo human MV is tenable and useful for evaluation of MV pathology.  相似文献   

15.
The mitral valve is a highly heterogeneous tissue composed of two leaflets, anterior and posterior, whose unique composition and regional differences in material properties are essential to overall valve function. While mitral valve mechanics have been studied for many decades, traditional testing methods limit the spatial resolution of measurements and can be destructive. Optical coherence elastography (OCE) is an emerging method for measuring viscoelastic properties of tissues in a noninvasive, nondestructive manner. In this study, we employed air-pulse OCE to measure the spatial variation in mitral valve elastic properties with micro-scale resolution at 1 mm increments along the radial length of the leaflets. We analyzed differences between the leaflets, as well as between regions of the valve. We found that the anterior leaflet has a higher elastic wave velocity, which is reported as a surrogate for stiffness, than the posterior leaflet, most notably at the annular edge of the sample. In addition, we found a spatial elastic gradient in the anterior leaflet, where the annular edge was found to have a greater elastic wave velocity than the free edge. This gradient was less pronounced in the posterior leaflet. These patterns were confirmed using established uniaxial tensile testing methods. Overall, the anterior leaflet was stiffer and had greater heterogeneity in its mechanical properties than the posterior leaflet. This study measures differences between the two mitral leaflets with greater resolution than previously feasible and demonstrates a method that may be suitable for assessing valve mechanics following repair or during the engineering of synthetic valve replacements.  相似文献   

16.
Chronic ischemic mitral regurgitation is a prevalent problem among patients following a myocardial infarction. Until recently, the pathophysiology was poorly understood, resulting in surgical strategies with suboptimal results and limited durability. The surgical approach has evolved from revascularization alone to an additional mitral valve procedure, replacement, or repair. When the valve was repaired, isolated annuloplasty was performed. The dilemma that surgeons had when repairing a mitral valve was which type of ring to use and what size. In all series with annuloplasty alone, the results were poor with very high recurrence rates. The primary feature of ischemic mitral regurgitation is a prolapse of the anterior leaflet at A3 ± A2. This prolapse can be caused by fibrotic elongation of the papillary muscle supporting A3 ± A2 or tethering of P3 by a ballooning posterior left ventricular wall. Using a technique that corrects this prolapse with Gore-Tex neochords, we have achieved excellent results with effective and durable correction of the ischemic mitral regurgitation.  相似文献   

17.
We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is approximately 0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (G(circ-rad)) and elastic moduli in both the commisure-commisure (E(circ)) and radial (E(rad)) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (+/-SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: G(circ-rad) = 121 +/- 22 N/mm2, E(circ) = 43 +/- 18 N/mm2, and E(rad) = 11 +/- 3 N/mm2 (E(circ) > E(rad), P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.  相似文献   

18.
Similar to mitral repair, newer methods of aortic valve reconstruction are achieving excellent outcomes with an 85% to 90% freedom from valve-related complications at 10 years. The goal of this review is to illustrate these newer and more stable techniques of aortic valve repair. Most patients with aortic insufficiency from either trileaflet or bicuspid aortic valves are candidates for repair, in addition to selected patients with mixed aortic stenosis/insufficiency and aortic root aneurysms. Initially, aggressive commissural annuloplasty is performed to reduce measured valve diameter to 19 to 21 mm. Leaflet prolapse is corrected with plication stitches placed in the free edge of each leaflet adjacent to the Nodulus Arantius. In this regard, the leaflet free edge functions as the chorda tendinea of the aortic valve, and shortening with plication stitches raises the leaflet to a proper "effective height." Leaflet defects are augmented with gluteraldehyde-fixed autologous pericardium, and mild-to-moderate strategically placed spicules of calcium are removed with the cavitron ultrasonic surgical aspirator. Using these methods, most insufficient aortic valves, and many with mixed lesions, can be satisfactorily repaired. Six cases are illustrated in this review, spanning the spectrum of pathologies from annular dilatation without leaflet defects, to standard congenital bicuspid valve with prolapse, to trileaflet prolapse, to unusual bicuspid pathology with calcification, to a moderately calcified trileaflet valve with mixed lesions, and to aortic root aneurysms with severe aortic insufficiency. All valves were repaired using the techniques described above with trivial residual leak and minimal gradients. All repairs have been followed with yearly echocardiography, and valve reconstruction with these methods is now quite stable with excellent late outcomes. Most insufficient aortic valves now can undergo stable repair with minimal late valve-related complications. Greater application of aortic valve repair seems indicated.  相似文献   

19.
Comparative immunolocalisations of latent transforming growth factor-beta-1 binding protein (LTBP)-2, fibrillin-1, versican and perlecan were undertaken in foetal human and wild type C57BL/6 mouse and Hspg2 exon 3 null HS deficient mouse intervertebral discs (IVDs). LTBP-2 was a prominent pericellular component of annular fibrochondrocytes in the posterior annulus fibrosus (AF), interstitial matrix adjacent to nucleus pulposus (NP) cells and to fibrillar and cell associated material in the anterior AF of the human foetal IVD and also displayed a pericellular localisation pattern in murine IVDs. Perlecan and LTBP-2 displayed strong pericellular colocalisation patterns in the posterior AF and to fibrillar material in the outer anterior AF in the foetal human IVD. Versican was a prominent fibril-associated component in the posterior and anterior AF, localised in close proximity to fibrillin-1 in fibrillar arrangements in the cartilaginous vertebral rudiments around paraspinal blood vessels, to major collagen fibre bundles in the anterior and posterior AF and shorter fibres in the NP. Fibrillin-1 was prominent in the outer anterior AF of the human foetal IVD and in fibres extending from the AF into the cartilaginous vertebral rudiments. LTBP-2 was prominently associated with annular fibrils containing fibrillin-1, versican was localised in close proximity to these but not specifically with LTBP-2. The similar deposition levels of LTBP-2 observed in the AF of the Hspg2 exon 3 null and wild type murine IVDs indicated that perlecan HS was not essential for LTBP-2 deposition but colocalisation of LTBP-2 with perlecan in the foetal human IVD was consistent with HS mediated interactions which have already been demonstrated in-vitro.  相似文献   

20.
It is known that Bacillus subtilis releases membrane vesicles (MVs) during the SOS response, which is associated with cell lysis triggered by the PBSX prophage-encoded cell-lytic enzymes XhlAB and XlyA. In this study, we demonstrate that MVs are released under various stress conditions: sucrose fatty acid ester (SFE; surfactant) treatment, cold shock, starvation, and oxygen deficiency. B. subtilis possesses four major host-encoded cell wall-lytic enzymes (autolysins; LytC, LytD, LytE, and LytF). Deletions of the autolysin genes abolished autolysis and the consequent MV production under these stress conditions. In contrast, deletions of xhlAB and xlyA had no effect on autolysis-triggered MV biogenesis, indicating that autolysis is a novel and prophage-independent pathway for MV production in B. subtilis. Moreover, we found that the cell lysis induced by the surfactant treatment was effectively neutralized by the addition of exogenous purified MVs. This result suggests that the MVs can serve as a decoy for the cellular membrane to protect the living cells in the culture from membrane damage by the surfactant. Our results indicate a positive effect of B. subtilis MVs on cell viability and provide new insight into the biological importance of the autolysis phenomenon in B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号