首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Chu C  Qu K  Zhong FL  Artandi SE  Chang HY 《Molecular cell》2011,44(4):667-678
Long noncoding RNAs (lncRNAs) are key regulators of chromatin state, yet the nature and sites of RNA-chromatin interaction are mostly unknown. Here we introduce Chromatin Isolation by RNA Purification (ChIRP), where tiling oligonucleotides retrieve specific lncRNAs with bound protein and DNA sequences, which are enumerated by deep sequencing. ChIRP-seq of three lncRNAs reveal that RNA occupancy sites in the genome are focal, sequence-specific, and numerous. Drosophila roX2 RNA occupies male X-linked gene bodies with increasing tendency toward the 3' end, peaking at CES sites. Human telomerase RNA TERC occupies telomeres and Wnt pathway genes. HOTAIR lncRNA preferentially occupies a GA-rich DNA motif to nucleate broad domains of Polycomb occupancy and histone H3 lysine 27 trimethylation. HOTAIR occupancy occurs independently of EZH2, suggesting the order of RNA guidance of Polycomb occupancy. ChIRP-seq is generally applicable to illuminate the intersection of RNA and chromatin with newfound precision genome wide.  相似文献   

4.
施剑  李艳明  方向东 《遗传》2017,39(3):189-199
长链非编码RNA(long non-coding RNA, lncRNA)是一类转录本长度超过200nt、不编码蛋白质的RNA。近年来,随着染色质构象捕获及转录组测序等技术的发展,lncRNA与染色质构象间的关系越来越受到重视。多项研究表明,lncRNA在基因调控网络中具有重要的作用,可通过影响细胞核高级结构的动态变化来调控真核基因的表达。因其广泛的基因调控功能及在肿瘤发生过程中的重要作用,lncRNA被认为是未来肿瘤临床诊断和预后判定的新型标志物之一。本文旨在介绍lncRNA改变细胞核高级结构从而调控关键基因表达的分子机制,并详细介绍lncRNA在肿瘤治疗中的临床意义。  相似文献   

5.
Long noncoding RNAs (lncRNAs) such as Xist, Air, and Kcnq1ot1 are required for epigenetic silencing of multiple genes in cis within large chromosomal domains, including distant genes located hundreds of kilobase pairs away. Recent evidence suggests that all three of these lncRNAs are functional and that they silence gene expression, in part, through an intimate interaction with chromatin. Here we provide an overview of lncRNA-dependent gene silencing, focusing on recent findings for the Air and Kcnq1ot1 lncRNAs. We review molecular evidence indicating that these lncRNAs interact with chromatin and correlate their presence with specific histone modifications associated with gene silencing. A general model for a lncRNA-dependent gene-silencing mechanism is presented based on the apparent ability of lncRNAs to recruit histone-modifying activities to chromatin. However, alternate mechanisms may be required to explain the silencing of some lncRNA-dependent genes. Finally, we discuss unanswered questions and future perspectives associated with these enigmatic lncRNA molecules.  相似文献   

6.
Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation.  相似文献   

7.
Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Among chromatin modifying factors shown to be recruited and regulated by long noncoding RNAs (lncRNAs), PRC2 is one of the most studied. Mammalian PRC2 binds thousands of RNAs in vivo, and it is becoming a model system for the recruitment of chromatin modifying factors by RNA. Yet, well-defined PRC2-binding motifs within target RNAs have been elusive. From the protein side, PRC2 RNA-binding subunits contain no known RNA-binding domains, complicating functional studies. Here we provide a critical review of existing models for the recruitment of PRC2 to chromatin by RNAs. This discussion may also serve researchers who are studying the recruitment of other chromatin modifiers by lncRNAs.  相似文献   

8.
9.
10.
11.
Mammalian imprinted genes are clustered in chromosomal domains. Their mono-allelic, parent-of-origin-specific expression is regulated by imprinting control regions (ICRs), which are essential sequence elements marked by DNA methylation on one of the two parental alleles. These methylation “imprints” are established during gametogenesis and, after fertilization, are somatically maintained throughout development. Nonhistone proteins and histone modifications contribute to this epigenetic process. The way ICRs mediate imprinted gene expression differs between domains. At some domains, for instance, ICRs produce long noncoding RNAs that mediate chromatin silencing. Lysine methylation on histone H3 is involved in this developmental process and is particularly important for imprinting in the placenta and brain. Together, the newly discovered chromatin mechanisms provide further clues for addressing imprinting-related pathologies in humans.  相似文献   

12.
13.
宿娅  张晨芳  魏强  李广林 《西北植物学报》2014,34(11):2357-2365
长链非编码RNA(long noncoding RNAs,lncRNAs)是一类长度超过200nt的非编码RNA分子,通过信号分子、诱饵分子、引导分子、支架分子等4种方式在转录水平和转录后水平调控基因的表达。lncRNAs的表达水平相对于蛋白编码基因较低,但它们在X染色体沉默、基因组印迹、染色体修饰、转录激活、转录干扰以及核内运输等方面具有重要的功能。相对于研究较多的非编码小RNA,lncRNAs的功能目前尚不完全清楚。该文从lncRNAs的起源、分类、分子机制、功能和进化等方面综述了lncRNAs的研究进展,为进一步探究lncRNAs的功能和作用机制提供依据。  相似文献   

14.
15.
16.
17.
Long noncoding RNAs are key regulators of chromatin states for important biological processes such as dosage compensation, imprinting, and developmental gene expression 1,2,3,4,5,6,7. The recent discovery of thousands of lncRNAs in association with specific chromatin modification complexes, such as Polycomb Repressive Complex 2 (PRC2) that mediates histone H3 lysine 27 trimethylation (H3K27me3), suggests broad roles for numerous lncRNAs in managing chromatin states in a gene-specific fashion 8,9. While some lncRNAs are thought to work in cis on neighboring genes, other lncRNAs work in trans to regulate distantly located genes. For instance, Drosophila lncRNAs roX1 and roX2 bind numerous regions on the X chromosome of male cells, and are critical for dosage compensation 10,11. However, the exact locations of their binding sites are not known at high resolution. Similarly, human lncRNA HOTAIR can affect PRC2 occupancy on hundreds of genes genome-wide 3,12,13, but how specificity is achieved is unclear. LncRNAs can also serve as modular scaffolds to recruit the assembly of multiple protein complexes. The classic trans-acting RNA scaffold is the TERC RNA that serves as the template and scaffold for the telomerase complex 14; HOTAIR can also serve as a scaffold for PRC2 and a H3K4 demethylase complex 13.Prior studies mapping RNA occupancy at chromatin have revealed substantial insights 15,16, but only at a single gene locus at a time. The occupancy sites of most lncRNAs are not known, and the roles of lncRNAs in chromatin regulation have been mostly inferred from the indirect effects of lncRNA perturbation. Just as chromatin immunoprecipitation followed by microarray or deep sequencing (ChIP-chip or ChIP-seq, respectively) has greatly improved our understanding of protein-DNA interactions on a genomic scale, here we illustrate a recently published strategy to map long RNA occupancy genome-wide at high resolution 17. This method, Chromatin Isolation by RNA Purification (ChIRP) (Figure 1), is based on affinity capture of target lncRNA:chromatin complex by tiling antisense-oligos, which then generates a map of genomic binding sites at a resolution of several hundred bases with high sensitivity and low background. ChIRP is applicable to many lncRNAs because the design of affinity-probes is straightforward given the RNA sequence and requires no knowledge of the RNA''s structure or functional domains.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号