首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Syntheses of new glycosylated neutral and cationic porphyrin dimers linked at the meso-position via a flexible hydrocarbon chain are described. A detailed 1H and 13C NMR study allows their complete structural elucidation. The UV-visible, fluorescence and MALDI mass spectra are also presented. Photocytotoxicities of these compounds against K562 leukaemia cell line are compared to those of Photofrin II.  相似文献   

2.
This Letter reports the synthesis and characterization of a new series of water-stable and soluble photosensitizers (PS-CNCs) composed of cellulose nanocrystals (CNCs) bearing polyaminated chlorin p6. With a view to improve cancer cell targeting, these photosensitizers were assayed for their antitumor activity against HaCat cell line. IC(50) values fell within the nanomolar-range, making these photosensitizers promising for further in vitro and in vivo investigations.  相似文献   

3.
Photodynamic therapy (PDT) is a potential tool in cancer treatment. Today this therapy is established among others for the treatment of nonmelanoma skin cancer. However, the more dangerous skin cancer--the melanoma--still has to be removed by surgery. Therefore, we investigated the effects of PDT and additional administration of heme oxygenase I (HO-I) and poly(ADP-ribose) polymerase (PARP) inhibitors on the treatment of melanoma cells in comparison to nonmalignant keratinocytes. Therefore, cocultures were established with WM451LU melanoma cells and HaCaT keratinocytes. In the coculture some 65% melanoma cells and 35% HaCaT cells were present before PDT, whereas after PDT the proportion was 41% melanoma cells and 59% HaCaT cells. Combination of both inhibitors improves these results to only 16% melanoma cells and 84% HaCaT cells. PDT is, therefore, a potent skin cancer treatment, which might also be interesting for melanoma treatment. The cytotoxic effects of PDT are largely mediated by ROS. Addition of HO-I and PARP inhibitors could improve the efficiency of photodynamic treatment.  相似文献   

4.
Fipronil is a phenyl pyrazole molecule widely used across the world as both insecticide and veterinary drug. The main goal of this work was to synthesize a fluorescently labeled fipronil derivative for cellular imaging without affecting its intrinsic properties. We selected fluorescein as fluorescent probe and we investigated different strategies for stable chemical ligation between both entities, such as thiourea and direct peptide bond. While thiourea bond displayed low stability, direct peptide bond was difficult to achieve due to problems of steric hindrance. The best result was obtained by conjugation using click chemistry, which allowed to obtain fipronil stably labeled with the fluorescent probe.  相似文献   

5.
Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max) = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state.  相似文献   

6.
Conjugation of chitosan with nucleobases is expected to expand its not only antimicrobial activity but also anti-cancer activity. Here, we report the synthesis of a novel chitosan-thymine conjugate by the reaction between chitosan and thymine-1-yl-acetic acid followed by acylation. The synthesized conjugate was characterized by FTIR, XRD, (1)H NMR, TGA and SEM. The microbiological screening results demonstrated the antimicrobial activity of the conjugate against bacteria viz., Escherichia coli, Staphylococcus aureus, and fungi viz., Aspergillus niger. The chitosan-thymine conjugate also inhibited (p<0.05) the proliferation of human liver cancer cells (HepG2) in a dose-dependent manner but had no cellular toxicity in non-cancerous mouse embryonal fibroblast cells (NIH 3T3). Thus, the chitosan-nucleobase conjugate may open a new perspective in biomedical applications.  相似文献   

7.
The synthesis of polyamide-oligonucleotide conjugate molecules.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have developed methods for the synthesis of peptide-oligodeoxyribonucleotide conjugate molecules in particular, and polyamide-oligonucleotide conjugates in general. Synthesis is carried out by a solid-phase procedure and involves the assembly of a polyamide on the solid support, conversion of the terminal amino group to a protected primary aliphatic hydroxy group by reaction with alpha, omega-hydroxycarboxylic acid derivatives, and finally oligonucleotide synthesis using phosphoramidite chemistry. The conjugate molecules can be used as DNA probes, with the polyamide component carrying one or more non-radioactive markers. These conjugates also have the potential to be used as anti-sense inhibitors of gene expression, with the peptide segment acting as a targeting moiety.  相似文献   

8.
Lee H  Lee K  Park TG 《Bioconjugate chemistry》2008,19(6):1319-1325
Chemical conjugates of paclitaxel and hyaluronic acid (HA) were synthesized by utilizing a novel HA solubilization method in a single organic phase. Hydrophilic HA was completely dissolved in anhydrous DMSO with addition of poly(ethylene glycol) (PEG) by forming nanocomplexes. Paclitaxel was then chemically conjugated to HA in the DMSO phase via an ester linkage without modifying extremely hydrophilic HA. A series of HA-paclitaxel conjugates with different conjugation percentages were synthesized and characterized. HA-paclitaxel conjugates self-assembled in aqueous solution to form nanosized micellar aggregates, as characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). An intact form of paclitaxel was regenerated from HA-paclitaxel conjugate micelles at acidic pH conditions. HA-paclitaxel conjugate micelles exhibited more pronounced cytotoxic effect for HA receptor overexpressing cancer cells than for HA receptor deficient cells, suggesting that they can be potentially utilized as tumor-specific nanoparticulate therapeutic agents.  相似文献   

9.
Ultrasmall particles of iron oxide (USPIOs) coated with 3,3′-bis(phosphonate)propionic acid were covalently coupled to a home-made Arg-Gly-Asp (RGD) peptidomimetic molecule via a short oligoethyleneglycol (OEG) spacer. The conjugation rate was measured by X-ray photoelectron spectroscopy (XPS). The particle size and magnetic characteristics were kept. Our novel conjugate targeted efficiently Jurkat cells (increase of 229% vs the control).  相似文献   

10.
Here we describe the efficient high yield atmospheric pressure microwave-assisted synthesis for seven distinct RuII coordination complexes relevant to solar energy conversion schemes and dye sensitized solar cells. In all instances, the reaction times have been markedly shortened, concomitant with higher yields with little or no need for subsequent purification and several multi-step reactions proceeded flawlessly in a single pot. Importantly, we observed no evidence for the decarboxylation of the essential metal oxide surface-anchoring 4,4′-diethylester-2,2′-bipyridine or 4,4′-dicarboxy-2,2′-bipyridine ligands as long as open reaction vessel conditions were utilized; these functionalities are not tolerant to sealed microwave reaction (superheated solvent/pressurized) conditions. The combined results suggest that microwave-assisted chemistry is indeed a valuable tool as far as RuII coordination chemistry is concerned and can likely be applied in the combinatorial pursuit of new dyes bearing sensitive functionalities.  相似文献   

11.
12.
New chiral phosphine-, thiolate-, mesylate-, and tosylate-containing N-heterocyclic carbene ligands have been synthesized in fair to excellent yield. These bidentate ligands have been evaluated in enantioselective copper-catalyzed conjugate addition to both cyclic and acyclic enones and displayed good catalytic activities and poor to good enantiomeric excesses (up to 80%).  相似文献   

13.
A novel hormone conjugate has been prepared by a coupling reaction between modified estrone and dextran. In order to provide a suitable reactive estrone derivative for coupling with dextran and a spacer between the drug carrier and the hormone, the steroidal sex hormone was succinylated by reaction with succinic anhydride. Subsequently, the carboxylic acid terminal of succinylated estrone was further reacted with thionyl chloride to replace the hydroxy group with chlorine to make a better leaving group. The ester bond was employed as labile linkage between the hormone and the biopolymer carrier backbone so that the coupled estrogen could be released from the conjugate via ester hydrolysis. Structures of the modified estrone and dextran–estrone conjugate were determined by elemental analysis and by FTIR, 1H and 13C NMR spectroscopies. The degree of substitution (D.S.) per anhydroglucose (AHG) unit was 0.33 (11.0 mol-% of estrone moieties), as calculated from the 1H NMR spectrum. In vitro hydrolysis of the conjugate in aqueous phosphate buffer/ethanol solutions at pH 8.0 and 7.4 and 37°C released estrone was completed within a few days and followed zero-order kinetics.  相似文献   

14.
Cyclam and DOTA-containing positron emission tomography radiotracers were prepared by using a modular chemical strategy based on peptide synthesis and chemoselective ligations. These molecules encompass two functional domains, one a tumour ‘homing’ domain and the other a chelating ligand for copper allowing nuclear imaging of tumours.  相似文献   

15.
Poly(amidoamine) (PAMAM) dendrimer-based multifunctional cancer therapeutic conjugates have been designed and synthesized. The primary amino groups on the surface of the generation 5 (G5) PAMAM dendrimer were neutralized through partial acetylation, providing enhanced solubility of the dendrimer (in conjugation of FITC (fluorescein isothiocyanate)) and preventing nonspecific targeting interactions (in vitro and in vivo) during delivery. The functional molecules fluorescein isothiocyanate (FITC, an imaging agent), folic acid (FA, targets overexpressed folate receptors on specific cancer cells), and paclitaxel (taxol, a chemotherapeutic drug) were conjugated to the remaining nonacetylated primary amino groups. The appropriate control dendrimer conjugates have been synthesized as well. Characterization of the G5 PAMAM dendrimer and its nanosize conjugates, including the molecular weight and number of primary amine groups, has been determined by multiple analytical methods such as gel permeation chromatography (GPC), nuclear magnetic resonance spectroscopy (NMR), potentiometric titration, high-performance liquid chromatography (HPLC), and UV spectroscopy. These multifunctional dendrimer conjugates have been tested in vitro for targeted delivery of chemotherapeutic and imaging agents to specific cancer cells. We present here the synthesis, characterization, and functionality of these dendrimer conjugates.  相似文献   

16.
Pyrrolobenzodiazepines (PBDs) and their dimers (bis-PBDs) have emerged as some of the most potent chemotherapeutic compounds and are currently under development as novel payloads in antibody-drug conjugates (ADCs). However, when used as stand-alone therapeutics or as warheads for small molecule drug conjugates (SMDCs), dose-limiting toxicities are often observed. As an elegant solution to this inherent problem, we designed and synthesized a diazepine-ring-opened bis-PBD prodrug (pro-PBD-PBD) folate conjugate lacking the one of the two imine moieties found in the corresponding free bis-PBD. Upon entering a targeted cell, cleavage of the linker system, including the hydrolysis of an oxazolidine moiety, results in the formation of a reactive intermediate which possesses a newly formed aldehyde as well as an aromatic amine. A fast and spontaneous intramolecular ring-closing reaction subsequently takes place as the aromatic amine adds to the aldehyde with the loss of water to give the imine, and as a result, the diazepine ring, thereby delivering the bis-PBD to the targeted cell. The in vitro and in vivo activity of this conjugate has been evaluated on folate receptor positive KB cells. Sub-nanomolar activity with good specificity and high cure rates with minimal toxicity have been observed.  相似文献   

17.
Previously reported results suggest that the analogue of the somatostatin des-AA1,2,5[D-Trp8,IAmp9]-somatostatin (CH-275) peptide bearing chelating agents able to coordinate radioactive metals could be used for scintigraphic imaging of tumor lesions overexpressing sstr1. An efficient synthetic procedure for the preparation of the somatostatin analogue CH-275 and its conjugate DTPAGlu-Gly-CH-275, bearing the chelating agent DTPAGlu (DTPAGlu=N,N-bis[2-[bis(carboxy-ethyl)amino]ethyl]-L-glutamic acid) on the N-terminus, by solid-phase peptide synthesis and 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, is here reported. Rapid and efficient labeling of DTPAGlu-Gly-CH-275 was achieved by addition of 111In(III) to the compound. Typical yields were greater than 97% as determined by reversed phase high performance liquid chromatography (HPLC) at specific activities in the range 4-9 GBq/micromol (100-250 Ci/mmol). A preliminary biological assay of the binding ability of 111In-DTPAGlu-Gly-CH-275 indicates, however, that the labeled compound does not display any specific interaction with somatostatin sstr1 receptors in the tested cell lines. To confirm this unexpected negative result, competition binding experiments were carried out, in which fixed tracer amounts of the 125I-labeled somatostatin-14 were incubated with the receptor-expressing cells in the presence of DTPAGlu-Gly-CH-275 or CH-275 at concentrations ranging from 10(-10) to 10(-3) M. While CH-275 shows a IC50 of 80 nM similar to that already found in displacement experiments on CHO-K1 sstr1-transfected cells, DTPAGlu-Gly-CH-275 displays instead very low or negligible affinity towards this receptor. The NMR solution characterization indicates that the presence of DTPAGlu does not influence the conformational and chemical features of the peptide moiety, thus suggesting that the loss in binding activity should be due to steric hindrance of either the chelating agent DTPAGlu or its indium complex.  相似文献   

18.
A series of porphyrin-DNA cross-linking conjugates were synthesized. Their cytotoxicities to tumor cells were tested using MTT assays first. Then, HeLa cell apoptosis induced by these cationic porphyrins under the light was examined by laser confocal microscopy, flow cytometric analysis, and further confirmed by observing the morphological changes and DNA fragmentation mainly.  相似文献   

19.
Carbohydrate-based biomarkers such as sialyl Lewis X are known to correlate with cancer formation and progression. By targeting sialyl Lewis X, we have developed a boronolectin-fluorophore conjugate, which was able to selectively label and image xenograft (sc) tumor. This represents the very first example that a small molecule capable of recognizing a carbohydrate biomarker was used for optical imaging application.  相似文献   

20.
The metabolic fate of [carbonyl-14C]nicotinamide was surveyed in leaf disks of seven mangrove species, Bruguiera gymnorrhiza, Rhizophora stylosa, Kandeliaobovata, Sonneratia alba, Pemphis acidula, Lumnitzera racemosa and Avicennia marina, with and without 250 mM NaCl. Uptake of [14C]nicotinamide by leaf disks was stimulated by 250 mM NaCl in K. candel, R. stylosa, A. marina and L. racemosa. [Carbonyl-14C]nicotinamide was converted to nicotinic acid and was utilised for the synthesis of nucleotides and nicotinic acid conjugates. Formation of nicotinic acid by the deaminase reaction was rapid; there was little accumulation of nicotinamide in the disks 3 h after administration. Radioactivity from [carbonyl-14C]nicotinamide was incorporated into pyridine nucleotides (mainly NAD and NADP) in all mangrove leaves, and the rates varied from 2% (in L. racemosa) to 15% (S. alba) of the total radioactivity taken up. NaCl generally reduced nicotinic acid salvage for NAD and NADP. In all mangrove leaf disks, the most heavily labelled compounds (up to 70% of total radioactivity) were trigonelline (N-methylnicotinic acid) and/or nicotinic acid N-glucoside. Trigonelline was formed in all mangrove plants, but N-glucoside synthesis was found only in leaves of A. marina and K. obovata. In A. marina, incorporation of radioactivity into N-glucoside (51%) was much greater than incorporation into trigonelline (2%). In general, NaCl stimulates the synthesis of these pyridine conjugates. The rate of decarboxylation of nicotinic acid in roots of A. marina seedlings was much greater than for the corresponding reaction observed in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号