首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beneficial metabolic effects of dietary soybean lecithin on lipid metabolism are now more clearly established. The intestinal absorption of cholesterol is decreased by soybean phosphatidylcholine-enriched diet and results in a cholesterol-lowering effect. There is an enhancement of the cholesterol efflux by endothelial cells incubated with soybean phosphatidylcholines, and a stimulation of the reverse cholesterol transport by high density lipoprotein-phosphatidylcholines. As a result of all these processes, phosphatidylcholines provided by the soybean lecithin metabolism appear to be key molecules controlling the biodynamic exchanges of lipids. They regulate homeostasis of cholesterol and fatty acids by decreasing their synthesis and promoting cholesterol oxidation into bile salts. Finally, the outcome is the increase in bile secretion of these lipids and/or their metabolite forms. Such findings constitute promising goals in the field of nutritional effects of soybean lecithin in the treatment or prevention of hyperlipidemia and related atherosclerosis.  相似文献   

2.
Both estrogen and dietary n-3 polyunsaturated fatty acids are known to be hypocholesterolemic, but appear to exert their effects by different mechanisms. In this study, the interaction between dietary fish oil (rich in n-3 polyunsaturated fatty acids) and estrogen in the regulation of hepatic cholesterol metabolism and biliary lipid secretion in rats was studied. Rats fed a low fat or a fish oil-supplemented diet for 21 days were injected with 17alpha-ethinyl estradiol (5 mg/kg body weight) or the vehicle only (control rats) once per day for 3 consecutive days. Estrogen-treatment led to a marked reduction in plasma cholesterol levels in fish oil-fed rats, which was greater than that observed with either estrogen or dietary fish oil alone. The expression of mRNA for cholesterol 7alpha-hydroxylase was decreased by estrogen in rats fed a low fat or a fish oil-supplemented diet, while the output of cholesterol (micromol/h/kg b.wt.) in the bile was unchanged in both groups. Cholesterol levels in the liver were increased by estrogen in rats given either diet, but there was a significant shift from cholesterol esterification to cholesteryl ester hydrolysis only in the fish oil-fed animals. Estrogen increased the concentration of cholesterol (micromol/ml) in the bile in rats fed the fish oil, but not the low fat diet. However, the cholesterol saturation index was unaffected. The output and concentration of total bile acid was also unaffected, but changes in the distribution of the individual bile acids were observed with estrogen treatment in both low fat and fish oil-fed groups. These results show that interaction between estrogen-treatment and dietary n-3 polyunsaturated fatty acids causes changes in hepatic cholesterol metabolism and biliary lipid secretion in rats, but does not increase the excretion of cholesterol from the body.  相似文献   

3.
Dietary lecithin can stimulate bile formation and biliary lipid secretion, particularly cholesterol output in bile. Studies also suggested that the lecithin-rich diet might modify hepatic cholesterol homeostasis and lipoprotein metabolism. Therefore, we examined hepatic activities of 3-hydroxy-3 methylglutaryl coenzyme A reductase "HMG -CoA reductase", cholesterol 7 alpha-hydroxylase and acyl-CoA: cholesterol acyltransferase "ACAT" as well as plasma lipids and lipoprotein composition in rats fed diets enriched with 20% of soybean lecithin during 14 days. We also evaluated the content of hepatic canalicular membrane proteins involved in lipid transport to the bile (all P-glycoproteins as detected by the C 219 antibody and the sister of P-glycoprotein "spgp" or bile acid export pump) by Western blotting. As predicted, lecithin diet modified hepatic cholesterol homeostasis. The activity of hepatic HMG-CoA reductase and cholesterol 7 alpha-hydroxylase was enhanced by 30 and 12% respectively, while microsomal ACAT activity showed a dramatic decrease of 75%. As previously reported from ACAT inhibition, the plasma level and size of very low-density lipoprotein (VLDL) were significantly decreased and bile acid pool size and biliary lipid output were significantly increased. The canalicular membrane content of lipid transporters was not significantly affected by dietary lecithin. The current data on inhibition of ACAT activity and related metabolic effects by lecithin mimic the previously reported effects following drug-induced inhibition of ACAT activity, suggesting potential beneficial effects of dietary lecithin supplementation in vascular disease.  相似文献   

4.
The molecular properties of immunosuppressive n-3 polyunsaturated fatty acids (PUFA) have not been fully elucidated. Using CD4(+) T cells from wild-type control and fat-1 transgenic mice (enriched in n-3 PUFA), we show that membrane raft accumulation assessed by Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) labeling was enhanced in fat-1 cells following immunological synapse (IS) formation by CD3-specific Ab expressing hybridoma cells. However, the localization of protein kinase Ctheta, phospholipase Cgamma-1, and F-actin into the IS was suppressed. In addition, both the phosphorylation status of phospholipase Cgamma-1 at the IS and cell proliferation as assessed by CFSE labeling and [(3)H]thymidine incorporation were suppressed in fat-1 cells. These data imply that lipid rafts may be targets for the development of dietary agents for the treatment of autoimmune and chronic inflammatory diseases.  相似文献   

5.
Tumor necrosis factor (TNF) is a macrophage derived peptide that has an antitumor action and modulates immune and inflammatory reactions. Dietary fatty acids may modulate TNF production as dietary n-3 polyunsaturated fatty acids suppress human monocyte TNF production, but enhance its secretion by murine peritoneal macrophages. Mice were maintained for 5 weeks on diets containing different amounts of n-3 and n-6 fatty acids. TNF, PGE2 and 6-keto PGF1 alpha production was monitored following in vitro stimulation of resident peritoneal macrophages with lipopolysaccharide. Macrophages from mice fed the high n-3 diet produced 8-fold more TNF and half the PGE2 produced by macrophages from mice on the other diets. Indomethacin caused an increase in the TNF production by macrophages from mice on all diets but macrophages from mice on the high n-3 diet produced more TNF than macrophages from mice on the other diets. Exogenous PGE2 (100 nM) greatly decreased TNF production by macrophages from mice on all diets, but macrophages from mice on the high n-3 diet secreted 70% more TNF than macrophages from mice fed the other diets, indicating that PGE2 is only partly responsible for the effects observed. The results show that feeding n-3 polyunsaturated fatty acids may cause enhanced TNF production by resident peritoneal macrophages and that PGE2 is partly responsible for the effect.  相似文献   

6.
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.  相似文献   

7.
The effect of dietary n-6/n-3 fatty acid ratio on alpha-tocopherol homeostasis was investigated in rats. Animals were fed diets containing fat (17% w/w) in which the n-6/n-3 ratio varied from 50 to 0.8. This was achieved by combining corn oil, fish oil, and lard. The polyunsaturated to saturated ratio and total alpha-tocopherol remained constant in all diets. Results showed that enrichment of n-3 polyunsaturated fatty acids in the diet, even at a low amount (3.9% w/w), resulted in a dramatic reduction of blood alpha-tocopherol concentration, which, in fact, is the result of a decrease in plasma lipids, since the alpha-tocopherol to total lipids ratio was not significantly altered. The most striking effect observed was a considerable alpha-tocopherol enrichment (x 4) of the heart as its membranes became enriched with n-3 polyunsaturated fatty acids. This process appeared even with a low amount of fish oil (3.9% w/w) added to the diet. Accordingly, a strong positive correlation was found between heart alpha-tocopherol and docosahexaenoic acid (r = 0.86) or docosahexaenoic acid plus eicosapentaenoic acid levels (r = 0.84). Conversely, the liver alpha-tocopherol level dropped dramatically when n-3 polyunsaturated fatty acids were gradually added to the diet. It is concluded that fish oil intake dramatically alters the alpha-tocopherol homeostasis in rats.  相似文献   

8.
Recent research has implicated dietary fish oils in the reduction of eicosanoids formed from arachidonic acid and amelioration of chronic diseases such as coronary heart disease, atherosclerosis and inflammation. Feeding studies were conducted to determine if the efficacy of dietary n-3 polyunsaturated fatty acids (PUFA) from fish oils was influenced by the quantity of n-6 polyunsaturated fatty acids and the total level of fat in the diet. Groups of mice were fed diets composed of 5 and 20% total fat with varying proportions of linoleic acid as a source of n-6 PUFA. Menhaden oil as a source of n-3 PUFA was fed at two levels of n-6 at each level of total fat. Eicosanoid biosynthesis was stimulated and assayed in the mouse peritoneum using zymosan as an inflammatory stimulus. Production of LTE4 and PGE2 was enhanced by increasing n-6 PUFA in the diet at both levels of total fat. High dietary fat significantly suppressed leukotriene (LT) synthesis. Dietary menhaden oil reduced LTE4 and PGE2 synthesis at both levels of dietary n-6 in the low fat study. In animals on 20% dietary fat menhaden oil significantly reduced LT synthesis only at a relatively low dietary n-6 PUFA. On a high n-6 PUFA high fat diets, menhaden oil did not significant affect LTE4 synthesis in response to zymosan stimulation. The results suggest that the effectiveness of fish oils in reducing eicosanoids in response to specific stimulation is influenced by the level of n-6 and the total quantity of fat in the diet.  相似文献   

9.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

10.
Conjugated linoleic acids (CLAs) and n-3 polyunsaturated fatty acids (PUFAs) improve insulin sensitivity in insulin-resistant rodents. However, the effects of these fatty acids on insulin secretion are not known but are of importance to completely understand their influence on glucose homeostasis. We therefore examined islet function after dietary supplementation consisting of 1% CLAs in combination with 1% n-3 enriched PUFAs for 12 wk to mice on a normal diet and to insulin-resistant mice fed a high-fat diet (58% fat). In the mice fed a normal diet, CLA/PUFA supplementation resulted in insulin resistance associated with low plasma adiponectin levels and low body fat content. Intravenous and oral glucose tolerance tests revealed a marked increase in insulin secretion, which nevertheless was insufficient to counteract the insulin resistance, resulting in glucose intolerance. In freshly isolated islets from mice fed the normal diet, both basal and glucose-stimulated insulin secretion were adaptively augmented by CLA/PUFA, and at a high glucose concentration this was accompanied by elevated glucose oxidation. In contrast, in high-fat-fed mice, CLA/PUFA did not significantly affect insulin secretion, insulin resistance, or glucose tolerance. It is concluded that dietary supplementation of CLA/PUFA in mice fed the normal diet augments insulin secretion, partly because of increased islet glucose oxidation, but that this augmentation is insufficient to counterbalance the induction of insulin resistance, resulting in glucose intolerance. Furthermore, the high-fat diet partly prevents the deleterious effects of CLA/PUFA, but this dietary supplementation was not able to counteract high-fat-diet-induced insulin resistance.  相似文献   

11.
Bile is the route for elimination of cholesterol from the body. Recent studies have begun to elucidate hepatocellular, molecular and physical-chemical mechanisms whereby bile salts stimulate biliary secretion of cholesterol together with phospholipids, which are enriched (up to 95%) in phosphatidylcholines. Active translocation of bile salts and phosphatidylcholines across the hepatocyte's canalicular plasma membrane provides the driving force for biliary lipid secretion. This facilitates physical-chemical interactions between detergent-like bile salt molecules and the ectoplasmic leaflet of the canalicular membrane, which result in biliary secretion of cholesterol and phosphatidylcholines as vesicles. Within the hepatocyte, separate molecular pathways function to resupply bile salts, phosphatidylcholines and cholesterol to the canalicular membrane for ongoing biliary lipid secretion.  相似文献   

12.
4 种不同脂肪源对太平洋鲑生长和体组成的影响   总被引:6,自引:0,他引:6  
在日粮中添加11.5%的4 种不同来源脂肪饲养180 尾初始重约为110g 的太平洋鲑(Oncorhynchus spp.)于水泥池中56d。实验分4 组,每组3个平行池,每池15尾鱼。研究日粮中4 种不同来源脂肪对淡水养殖太平洋鲑生长性能、体组成与品质的影响。4 组脂肪源分别为鱼油(实验1 组)、大豆油(实验2 组)、大豆磷脂(实验3 组)和玉米油(实验4 组)。实验表明:(1) 实验各组太平洋鲑存活率相似,但大豆磷脂组的特定生长率显著好于鱼油组、大豆油组和玉米油组(P0.05)。大豆磷脂组、大豆油组和玉米油组的饲料效益显著好于鱼油组(P< 0.05); (2) 大豆油组、大豆磷脂组和玉米油组太平洋鲑肠系膜脂肪与肝脏脂肪含量不同程度低于鱼油组,而肌肉中脂肪含量不同程度低于鱼油组; (3) 实验各组太平洋鲑肝脏脂肪、肌肉脂肪和肠脂中总多不饱和脂肪酸组成基本相似,但玉米油组、大豆磷脂组和大豆油组太平洋鲑总n-3 多不饱和脂肪酸比例较鱼油组显著下降,而总n-6 系多不饱和脂肪酸比例显著提高(P<0.05);(4) 玉米油组、大豆磷脂组和大豆油组太平洋鲑血浆中脂肪分解酶、甘油三酯和高密度脂蛋白指标较鱼油组不同程度上升;(5) 实验各组太平洋鲑解剖组织学检查未见异常病理变化。实验结果表明,淡水养殖条件下,太平洋鲑日粮中脂肪以添加大豆磷脂的生长性能最好,大豆油、玉米油和鱼油效果相似,添加玉米油、大豆磷脂和大豆油均不影响太平洋鲑健康状况和品质。    相似文献   

13.
The aim of this work was to study the cholesterol-lowering mechanisms induced by dietary soybean lecithin in hypercholesterolemic rabbits. Male New Zealand white rabbits (n = 6 in each group) were fed for 10 weeks either a low-fat control C diet, containing 27 g fat/kg, or high-fat diets enriched with 2 g cholesterol/kg and 77 g fat/kg. The high-fat diets contained 50 g lard (L), 50 g soybean triacylglycerol (SO), or 50 g pure soybean phosphatidylcholine (PLE). PLE diet decreased by 30% beta-VLDL-cholesterol, compared with SO diet. HDL2-, HDL3- and LDL-lipid contents were unchanged in the L, SO and PLE groups. In gallbladder bile, amounts of phospholipids, bile salts and cholesterol were significantly increased in PLE group by respectively 45%, 11% and 44%, in comparison with SO group. Intestinal and hepatic Hydroxy Methyl Glutaryl Coenzyme A reductase activities were not increased by PLE diet. Triacylglycerol hepatic content was lower in PLE group than in L or SO groups. Compared with triacylglycerol enriched diet, phosphatidylcholine enriched diet developed significant higher cholesterol- and triacylglycerol-lowering effects by a two-step mechanism: i) by reducing the beta-VLDLs, ii) by enhancing the secretion of bile cholesterol. Such results constitute promising effects of soybean phosphatidylcholine at the hepato-biliary level, in the treatment or prevention of hyperlipidemia and related atherosclerosis.  相似文献   

14.
Cyclosporine A is reported to cause cholestasis, but the evidence is confounded by anesthesia and surgery used in acute experiments. To better investigate the effect of cyclosporine on the liver, bile output was directly measured in three cholecystectomized dogs by cannulating the common duct through a chronic duodenal fistula. Control studies were done 1 month after surgery. Cyclosporine in oral doses of 5, 15, and 50 mg.kg-1.d-1 was then given for consecutive 1-week periods. Twice during each study period, bile output was measured for 5 h in fasted, awake animals: 3 h to establish basal conditions, followed by 2 h of taurocholate infusions at 1 and then 2 mumols.kg-1.min-1. Under basal conditions, bile flow rose with each dose of cyclosporine, increasing 63, 127, and 179% above control with cyclosporine 5, 15, and 50 mg.kg-1,d-1, respectively. Bile flow increased similarly during taurocholic acid stimulation. Cyclosporine had no effect on bile salt or bilirubin secretion. In this chronic dog model isolated from other causes of cholestasis, cyclosporine did not induce cholestasis but rather caused a dose-related choleresis without any change in bile salt secretion.  相似文献   

15.
The effects of dietary (n-6)/(n-3) polyunsaturated fatty acid balance on fatty acid composition, ouabain inhibition, and Na(+) dependence of Na(+), K(+)-ATPase isoenzymes of whole brain membranes were studied in 60-day-old rats fed over two generations a diet either devoid of alpha-linolenic acid [18:3(n-3)] (sunflower oil diet) or rich in 18:3(n-3) (soybean oil diet). In the brain membranes, the sunflower oil diet led to a dramatic decrease in docosahexaenoic acid [22:6(n-3)] membrane content. The activities of Na(+), K(+)-ATPase isoenzymes were discriminated on the basis of their differential affinities for ouabain and their sensitivity to sodium concentration. The ouabain titration curve of Na(+), K(+)-ATPase activity displayed three inhibitory processes with markedly different affinity [i.e., low (alpha1), high (alpha2), and very high (alpha3)] for brain membranes of rats fed the sunflower oil diet, whereas the brain membranes of rats fed the soybean oil diet exhibited only two inhibitory processes, low (alpha1) and high (alpha2' = alpha2 + alpha3). Regardless of the diet, on the basis of the Na(+) dependence of Na(+), K(+)-ATPase activity, three isoenzymes were found: alpha1 form displaying an affinity 1.5- to 2-fold higher that of than alpha2 and 3-fold higher that of alpha3. In rats fed the sunflower oil diet, alpha2 isoenzyme exhibited higher affinity for sodium (Ka = 8.8 mmol/L) than that of rats fed the soybean oil diet (Ka = 11.7 mmol/L). These results suggest that the membrane lipid environment modulates the functional properties of Na(+), K(+)-ATPase isoenzymes of high ouabain affinity (alpha2).  相似文献   

16.
To measure the effects of dietary n-3 polyunsaturated fatty acid (PUFA) supplementation on the reproductive capacity of adult male turkeys in industrial flocks, the males of 22 commercial farms were fed either a standard diet or a fish oil diet enriched in n-3 PUFAs. The fatty acid composition of the spermatozoa and reproductive performance were measured throughout the reproductive period. The fish oil diet very effectively increased the percentage of n-3 fatty acids (FA) (22:5n-3 and 22:6n-3) in spermatozoa and correspondingly decreased the percentage of n-6 PUFAs (20:4-6 and 22:4n-6): the n-3/n-6 ratio in spermatozoa fatty acids were 0.04-0.07 with the standard diet and 0.32-0.4 with the fish oil diet. These changes did not affect the spermatozoa content of n-9 PUFAs, particularly of 22:3n-9 which is abundant in turkey spermatozoa (9-12% of the total fatty acids). The supplementation was effective in the middle as at the end of the reproductive period. The reproductive capacity of males was modified by the diet and the positive effect of the n-3 supplemented diet increased with age (increase in hatching rates of nearly 2 points at 48-58 weeks for males fed fish oil diet). These results indicate that an increase in the dietary ratio of n-3/n-6 PUFAs is valuable to sustain the reproductive capacity of male turkeys especially when they are getting older.  相似文献   

17.
Dietary nucleotides affect the maintenance of immune responses, tissue repair and polyunsaturated fatty acid metabolism. Orotate, a pyrimidine nucleotide precursor, induces fatty livers by impairing VLDL hepatic secretion. The aim of this study was to evaluate the changes in the blood levels of fatty acids and prostacyclin (PGI2) and thromboxane (TXA2) in the weanling rat caused by the dietary intake of nucleotides and orotate. Three groups of rats at weaning were fed a control diet, an orotate supplemented diet (O-50) and a nucleotide supplemented diet (N-50) during 4 weeks, respectively. Absolute values of plasma polyunsaturated fatty acids greater than 18 carbon atoms of the n-6 and n-3 series were increased in the N-50 group and decreased in O-50 with regard to the control. However, the relative fatty acid composition of plasma lipid fractions was mostly unaffected. Plasma 6-keto-PGF1 alpha showed a trend to be increased in N-50 and serum TXB2 was significantly increased in that group. Both eicosanoids were unchanged by dietary orotate intake. These results may be explained because of the increased plasma 20:4n-6 found in rats fed a supplemented nucleotide diet. Thus, nucleotides present in foods appear to modulate PUFA conversion and eicosanoids synthesis in early life.  相似文献   

18.
19.
This review summarises the known effects of dietary factors on bovine and caprine milk fatty acid composition, as well as the regulation of cow and goat mammary lipid secretion. Special attention is given to fatty acids that could play a role for human health, such as saturated fatty acids, oleic acid, n-6- or n-3-C18 to C22 polyunsaturated fatty acids, trans isomers of C18:1 and C18:2, and isomers of conjugated linoleic acid (CLA). The main dietary factors taken into account are the nature of forages, including pasture, the forage:concentrate ratio and diet starch content, and the supplementation of dairy rations with crude or processed vegetable oils or oilseeds, and vitamin E. A particular emphasis is given to studies on interactions between these dietary factors, which show that there is a considerable plasticity of ruminant milk fatty acid composition. Despite the existence of several studies on the effects of dietary factors on the sensorial quality of milk and dairy products, there is a need to evaluate more deeply how the different feeding strategies could change the nutritional, sensorial and technological aspects of milk fat quality.  相似文献   

20.
We examined the influence of dietary fatty acid (FA) classes on the expression of protein kinase C (PKC) delta and epsilon in relation to the cardioprotective effects of chronic intermittent hypoxia (CIH). Adult male Wistar rats were fed a nonfat diet enriched with 10% lard (saturated FA [SFA]), fish oil (n-3 polyunsaturated FA [n-3 PUFA]), or corn oil (n-6 PUFA) for 10 weeks. After 4 weeks on the diet, each group was divided into two subgroups that were either exposed to CIH in a barochamber (7000 m, 8 hrs/ day) or kept at normoxia for an additional 5-6 weeks. A FA phospholipid profile and Western blot analysis of PKC were performed in left ventricles. Infarct size was assessed in anesthetized animals subjected to 20-min coronary artery occlusion and 3-hr reperfusion. CIH decreased the n-6/n-3 PUFA ratio in all groups by 23% independently of the initial value set by various diets. The combination of n-3 diet and CIH had a stronger antiarrhythmic effect during reperfusion than the n-3 diet alone; this effect was less pronounced in rats fed the n-6 diet. The normoxic n-6 group exhibited smaller infarctions (by 22%) than the n-3 group. CIH decreased the infarct size in n-3 and SFA groups (by 20% and 23%, respectively) but not in the n-6 group. Unlike PKC epsilon, the abundance of PKC delta in the myocardial particulate fraction was increased by CIH except for the n-6 group. Myocardial infarct size was negatively correlated (r=- 0.79) with the abundance of PKC delta in the particulate fraction. We conclude that lipid diets modify the infarct size-limiting effect of CIH by a mechanism that involves the PKC delta-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号