首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pownall HJ 《Biochemistry》2006,45(38):11514-11522
Cellular cholesterol efflux is an early, obligatory step in reverse cholesterol transport, the putative antiatherogenic mechanism by which human plasma high-density lipoproteins (HDL) transport cholesterol from peripheral tissue to the liver for recycling or disposal. HDL-phospholipid content is the essential cholesterol-binding component of lipoproteins and therefore a major determinant of cholesterol efflux. Thus, increased phospholipidation of lipoproteins, particularly HDL, is one strategy for increasing cholesterol efflux. This study validates a simple, new detergent perturbation method for the phospholipidation of plasma lipoproteins; we have quantified the cholesterophilicity of human plasma lipoproteins and the effects of lipoprotein phospholipidation on cholesterophilicity and cellular cholesterol efflux mediated by the class B type I scavenger receptor (SR-BI). We determined that low-density lipoproteins (LDL) are more cholesterophilic than HDL and that LDL has a higher affinity for phospholipids than HDL whereas HDL has a higher phospholipid capacity than LDL. Phospholipidation of total human plasma lipoproteins enhances cholesterol efflux, an effect that occurs largely through the preferential phospholipidation of HDL. We conclude that increasing HDL phospholipid increases its cholesterophilicity, thereby making it a better acceptor of cellular cholesterol efflux. Phospholipidation of lipoproteins by detergent perturbation is a simple way to increase HDL cholesterophilicity and cholesterol efflux in a way that may be clinically useful.  相似文献   

2.
3.

Aims

Diabetes is associated with atherogenesis and macrophage-foam cell formation, due in part to a decrease in HDL-mediated cholesterol efflux from macrophages. This study examined the expression of proteins involved in cholesterol transport, i.e. ABCA1 and SR-BI, under diabetic conditions.

Methods and results

ABCA1 expression was similar, whereas SR-BI expression (mRNA and protein) was significantly increased in mouse peritoneal macrophages (MPM) harvested from C57Bl/6 diabetic mice, compared to MPM from control non-diabetic mice. Similar results were obtained in vitro in J-774A.1 macrophage-like cell line incubated with high (30 mM) vs. low (5 mM) glucose concentrations. Accordingly, association and internalization of HDL to MPM from diabetic mice, or to J-774A.1 macrophages grown under diabetic conditions was significantly higher compared to control cells. Unexpectedly, however, increased macrophage SR-BI expression was associated with a substantial reduction in HDL-mediated cholesterol efflux from the macrophages. Moreover, total cellular cholesterol content was increased by 28% in macrophages incubated with HDL under high glucose concentrations, compared to low glucose concentrations. This effect was abolished by a rabbit polyclonal anti-SR-BI, which blocks binding to the receptor, or alternatively by using BLT1, a specific inhibitor of lipid transport via the SR-BI.

Conclusions

Diabetes stimulates the expression of SR-BI in macrophages and leads to a shift in its activity from HDL-mediated cholesterol efflux to HDL-mediated cholesterol influx. These effects may lead to increased foam cell formation and atherosclerosis development.  相似文献   

4.
We evaluated the impact of gender differences in both the quantitative and qualitative features of HDL subspecies on cellular free cholesterol efflux through the scavenger receptor class B type I (SR-BI), ABCA1, and ABCG1 pathways. For that purpose, healthy subjects (30 men and 26 women) matched for age, body mass index, triglyceride, apolipoprotein A-I, and high density lipoprotein-cholesterol (HDL-C) levels were recruited. We observed a significant increase (+14%; P < 0.03) in the capacity of whole sera from women to mediate cellular free cholesterol efflux via the SR-BI-dependent pathway compared with sera from men. Such enhanced efflux capacity resulted from a significant increase in plasma levels of large cholesteryl ester-rich HDL2 particles (+20%; P < 0.04) as well as from an enhanced capacity (+14%; P < 0.03) of these particles to mediate cellular free cholesterol efflux via SR-BI. By contrast, plasma from men displayed an enhanced free cholesterol efflux capacity (+31%; P < 0.001) via the ABCA1 transporter pathway compared with that from women, which resulted from a 2.4-fold increase in the plasma level of prebeta particles (P < 0.008). Moreover, in women, SR-BI-mediated cellular free cholesterol efflux was significantly correlated with plasma HDL-C (r = 0.72, P < 0.0001), whereas this relationship was not observed in men. In conclusion, HDL-C level may not represent the absolute indicator of the efficiency of the initial step of the reverse cholesterol transport.  相似文献   

5.
The human scavenger receptor SR-BI/Cla-1 promotes efflux of free cholesterol from cells to both high-density and low-density lipoproteins (HDL, LDL). SR-BI/Cla-1-mediated cholesterol efflux to HDL is dependent on particle size, lipid content and apolipoprotein conformation; in contrast, the capacity of LDL subspecies to accept cellular cholesterol via this receptor is indeterminate. Cholesterol efflux assays were performed with CHO cells stably transfected with Cla-1 cDNA. Expression of Cla-1 in CHO cells induced elevation in total cholesterol efflux to plasma, LDL and HDL. Such Cla-1-specific efflux was abrogated by addition of anti-Cla-1 antibody. LDL were fractionated into five subspecies either on the basis of hydrated density or size. Among LDL subfractions, small dense LDL (sdLDL) were 1.5-to 3-fold less active acceptors for Cla-1-mediated cellular cholesterol efflux. Equally, sdLDL markedly reduced Cla-1-specific cholesterol efflux to large buoyant LDL in a dose-dependent manner. Conversely, sdLDL did not influence efflux to HDL(2). These findings provide evidence that LDL particles are heterogeneous in their capacity to promote Cla-1-mediated cholesterol efflux. Relative to HDL(2), large buoyant LDL may constitute physiologically-relevant acceptors for cholesterol efflux via Cla-1.  相似文献   

6.
Fibrates are widely used as lipid lowering drugs acting as peroxisome proliferator-activated receptors α (PPARα) agonists and modulating the expression of several genes involved in lipid and lipoprotein metabolism. Much less is known on the effect of fibrates in HDL structure and composition. Therefore, we examined whether fenofibrate induces quantitative and/or qualitative modifications in HDL metabolism in the rabbit, an animal that, contrary to rodents and similar to humans, is less sensitive to peroxisome proliferators. We first demonstrated that 3-week treatment with fenofibrate (250 mg/kg/day) induced an important increase in serum apolipoprotein A-I, HDL-cholesterol and HDL-phospholipids concentrations and a relative enrichment in HDL cholesteryl ester content. Moreover, the fatty acid profiles from fenofibrate-treated rabbits displayed a dramatic increase in the serum or HDL C18:3 ω6 to C18:2 ω6 ratio suggesting higher Δ6 desaturase activity. In addition, HDL from fenofibrate-treated animals exhibited higher relative proportions of sphingomyelin, phosphatidylinositol and phosphatidylethanolamine. We then reported that fenofibrate induced major changes in the physical characteristics of HDL, mainly a higher size and a faster mobility on agarose gel electrophoresis. Finally, serum or HDL from treated rabbits exhibited higher capacity to promote cholesterol efflux from Scavenger receptor class B type I (SR-BI)-rich Fu5AH cells compared to controls. Our findings demonstrate that fenofibrate has beneficial effects in rabbits by increasing the mass of the circulating HDL pool and by modifying their composition transforming them as better acceptors of cellular cholesterol through SR-BI pathway. These effects of fenofibrate might contribute to its benefits on the prevention and treatment of atherosclerosis.  相似文献   

7.
Stabilin-2 was recently shown to mediate a heterophilic interaction with integrin alphaMbeta2 via its FAS1 domain. Here, we demonstrate that stabilin-2 also mediates homophilic cell-cell interactions. L cells expressing stabilin-2 mediate a significant level of cell aggregation, and this aggregation is significantly inhibited by anti-stabilin-2 antibody. Stabilin-2-mediated aggregation is mediated by homophilic interactions and enhanced in the presence of Ca2+ and Mg2+. Interestingly, exogenous addition of FAS1 domains but not EGF-like domains enhances stabilin-2-mediated cell aggregation, suggesting that exogenous FAS1 domains may form polymeric structure with FAS1 domains of stabilin-2. Together, these data show the participation of stabilin-2 in homophilic cell adhesion and role of FAS1 domains.  相似文献   

8.
A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson–Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53.  相似文献   

9.
Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (−17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver.  相似文献   

10.
Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated serum enzyme thought to make a major contribution to the antioxidant and anti-inflammatory capacities of HDLs. However, the role of PON1 in the modulation of cholesterol efflux is poorly understood. The aim of our study was to investigate the involvement of PON1 in the regulation of cholesterol efflux, especially the mechanism by which it modulates HDL-mediated cholesterol transport. The enrichment of HDL(3) with human PON1 enhanced, in a dose-dependent manner, cholesterol efflux from THP-1 macrophage-like cells and ABCA1-enriched J774 macrophages. Moreover, an additive effect was observed when ABCA1-enriched J774 macrophages were incubated with both PON1 and apo-AI. Interestingly, PON1 alone was able to mediate cholesterol efflux from J774 macrophages and to upregulate ABCA1 expression on J774 macrophages. Immunofluorescence measurement showed an increase in PON1 levels in the cytoplasm of J774 macrophages overexpressing ABCA1. PON1 used an apo-AI-like mechanism to modulate cholesterol efflux from rapid and slow efflux pools derived from the lipid raft and nonraft domains of the plasma membrane, respectively. This was supported by the fact that ABCA1 protein was incrementally expressed by J774 macrophages within the first few hours of incubation with cholesterol-loaded J774 macrophages and that cyclodextrin significantly inhibited the capacity of PON1 to modulate cholesterol efflux from macrophages. This finding suggested that PON1 plays an important role in the antiatherogenic properties of HDLs and may exert its protective function outside the lipoprotein environment.  相似文献   

11.
We have studied the effects of mutations in apoA-I on reconstituted high density lipoprotein (HDL) particle (rHDL(apoA-I)) binding to and cholesterol efflux from wild-type (WT) and mutant forms of the HDL receptor SR-BI expressed by ldlA-7 cells. Mutations in helix 4 or helix 6 of the apoA-I reduced efflux by 79 and 51%, respectively, without substantially altering receptor binding (apparent K(d) values of 1.1-4.4 microg of protein/ml). SR-BI with an M158R mutation bound poorly to rHDL with WT and helix 4 mutant apoA-I; the helix 6 mutant restored tight binding to SR-BI(M158R) (K(d) values of 48, 60, and 7 microg of protein/ml, respectively). SR-BI(M158R)-mediated cholesterol efflux rates, normalized for binding, were high for all three rHDLs (71-111% of control). In contrast, absolute (12-19%) and binding-corrected (24-47%) efflux rates for all three rHDLs mediated by SR-BI with Q402R/Q418R mutations were very low. We propose that formation of a productive complex between apoA-I in rHDL and SR-BI, in which the lipoprotein and the receptor must either be precisely aligned or have the capacity to undergo appropriate conformational changes, is required for efficient SR-BI-mediated cholesterol efflux. Some mutations in apoA-I and/or SR-BI can result in high affinity, but non-productive, binding that does not permit efficient cholesterol efflux.  相似文献   

12.
The fluorescent probe Prodan has been widely used as a probe of model and biological membranes. Its fluorescent maxima in phospholipid bilayers vary as a function of phase state, with maxima at 485 for the liquid crystal Lalpha, 435 nm for the gel L'beta, and 507 nm for the interdigitated gel LbetaI phase, with excitation at 359 nm. These spectral changes have been used for the detection of phase changes among these phases. In the present study, the fluorescent properties and partition coefficients of Prodan in model membranes of phosphatidylcholines and phosphatidylethanols have been studied as a function of lipid phase state and cholesterol content. It is shown that the Prodan spectrum in the presence of cholesterol no longer reflects the known phase state of the lipid; in each phase state, the presence of cholesterol leads to a spectrum with the maximum at 435 nm, characteristic of the noninterdigitated gel phase. The partition coefficient of Prodan into these lipids also varies with the phase state, giving values of 0.35 x 10(4) in the interdigitated gel, 1.8 x 10(4) in the noninterdigitated gel, and 7. 6 x 10(4) in the liquid crystal phase. In the presence of cholesterol these partition coefficients are increased to 13 x 10(4) for the liquid crystal and the gel phase, and 5.1 x 10(4) in the presence of 100 mg/ml ethanol. These results suggest that Prodan has preferential interactions with cholesterol, and is thus not a randomly distributed fluorescent reporter probe in membranes containing cholesterol. These results suggest that Prodan should be used only with great caution in complex lipid mixtures, particularly biological membranes.  相似文献   

13.
14.
Formation of macrophage-derived foam cells is a hallmark in earlier stages of atherosclerosis (AS). Increased cholesterol efflux from macrophage foam cells promote atherosclerotic regression. In the present study, lysophosphatidylcholine (LPC) promoting cholesterol efflux from macrophage foam cells was observed, and the mechanism underlying the action was investigated. Macrophage foam cells from mice were incubated with different concentrations of LPC (10, 20, 40, 80 microM), and the free cholesterol in medium increased but total intracellular cholesterol decreased. At the same time, the expression of PPARgamma, LXRalpha, ABCA1 was enhanced in a dose-dependent manner. The treatment of macrophage foam cells with 40 microM LPC for 12, 24 and 48 h promoted cellular cholesterol efflux in a time-dependent manner, meanwhile expression of PPARgamma, LXRalpha, ABCA1 was also raised respectively. Addition of different specific inhibitors of PPARgamma (GW9662), LXRalpha (GGPP), ABCA1 (DIDS) to the foam cells significantly suppressed LPC-induced cholesterol efflux. Also treatment with specific inhibitors of PPARgamma or LXRalpha decreased ABCA1 mRNA and protein expressions. LPC (40 microM)-induced cholesterol efflux was significantly lower in macrophage foam cells from apoE deficient mice than from normal C57BL/6J mice. In contrast, 10 microg apoAI-induced cholesterol efflux from foam cells remained in apoE deficient mice. The present results indicate that LPC promotes cholesterol efflux from macrophage foam cells via a PPARgamma-LXRalpha-ABCA1-dependent pathway. Furthermore, apoE may be involved in this process.  相似文献   

15.
Cancer-predisposing missense mutations in the RING domain of BRCA1 primarily target Zn(2+)-liganding residues. Here we report on the structural consequences of such mutations introduced into the second Zn(2+) site (Site II) of the BRCA1 RING domain and their effect on the interaction with the BARD1 RING domain. Each of the BRCA1 Site II mutants still interact and form a stable heterodimer with BARD1. Limited proteolysis of BRCA1/BARD1 complexes, monitored by matrix-assisted laser desorption ionization time-of-flight spectrometry, show that the mutations cause a local structural perturbation that is primarily confined to the second Zn(2+) binding loop of the BRCA1 subunit. These findings are consistent with the structure of the BRCA1/BARD1 heterodimer, which shows this region is well removed from the helices required for dimerization with BARD1. Instead, the mutations alter a region of BRCA1 that appears to be required for interaction with ubiquitin-conjugating enzymes.  相似文献   

16.
Methotrexate exits L1210 mouse leukemia cells via multiple routes that include a unidirectional efflux component which is sensitive to bromosulfophthalein. This efflux component has been characterized in the present study after eliminating the contribution from the other efflux routes by treatment of the cells with an active ester of methotrexate and by reducing the assay pH to 6.2. The remaining efflux at pH 6.2 was greater than 90% sensitive to bromosulfophthalein. This route was also inhibited by probenecid, prostaglandin A1, diamide, 1-methyl-3-isobutylxanthine, various metabolic inhibitors, and by transfer of the cells to a buffer containing high concentrations of KCl. The inhibition by prostaglandin A1 was exceptionally potent and reached 50% at a concentration of 0.5 microM. An enhancement in efflux occurred upon the addition of glucose or by transfer of the cells to a non-saline buffer. When parameters relating to cellular energetics were measured, a reduction in ATP level was associated with the inhibition of efflux by probenecid, carbonylcyanide m-chlorophenylhydrazone, valinomycin, and antimycin A, whereas the increase in efflux by glucose was accompanied by an increase in intracellular ATP. Changes in ATP, however, were not associated with the inhibition by various other compounds or additions or with the enhancement in efflux by the non-anionic buffer. When the relative sensitivity of methotrexate efflux to bromosulfophthalein, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, and lactic anhydride was compared with other anion transport systems, differences in specificity indicated that methotrexate was not exiting the cells via the bicarbonate/chloride exchange carrier, the lactate/H+ co-transport system, or a system which mediates the efflux of phthalate. However, a correlation was apparent between the sensitivity of methotrexate efflux to inhibition by prostaglandin A1, probenecid, and certain metabolic inhibitors and the ability of these same compounds to inhibit the unidirectional efflux of 3',5'-cyclic AMP in other cell lines, suggesting that methotrexate may share a common efflux route with cyclic nucleotides.  相似文献   

17.
Membrane restructuring via ceramide results in enhanced solute efflux.   总被引:4,自引:0,他引:4  
The capacity of ceramides to modify the permeability barrier of cell membranes has been explored. Membrane efflux induced either by in situ generated ceramides (through enzymatic cleavage of sphingomyelin) or by addition of ceramides to preformed membranes has been studied. Large unilamellar vesicles composed of different phospholipids and cholesterol, and containing entrapped fluorescent molecules, have been used as a system to assay ceramide-dependent efflux. Small proportions of ceramide (10 mol % of total lipid) that may exist under physiological conditions of ceramide-dependent signaling have been used in most experiments. When long chain (egg-derived) ceramides are used, both externally added or enzymatically produced ceramides induce release of vesicle contents. However, the same proportion of ceramides generated by sphingomyelinase induce faster and more extensive efflux than when added in organic solution to the preformed vesicles. Under our conditions 10 mol % of N-acetylsphingosine (C(2)-ceramide) did not induce any efflux. On the other hand, sphingomyelinase treatment of bilayers containing 50 mol % sphingomyelin gave rise to release of fluorescein-derivatised dextrans of molecular mass approximately 20 kDa, i.e. larger than cytochrome c. These results have been discussed in the light of our own previous data (Ruiz-Argüello, M. B., Basa?ez, G., Go?i, F. M., and Alonso, A. (1996) J. Biol. Chem. 271, 26616-26621) and of the observations by Siskind and Colombini (Siskind, L. J., and Colombini, M. (2000) J. Biol. Chem. 275, 38640-38644). Our spectroscopic observations appear to be in good agreement with the electrophysiological studies of the latter authors. Furthermore, some experiments in this paper have been designed to explore the mechanism of ceramide-induced efflux. Two properties of ceramide, namely its capacity to induce negative monolayer curvature and its tendency to segregate into ceramide-rich domains, appear to be important in the membrane restructuring process.  相似文献   

18.
We have prepared palmitoyl sphingomyelin (PSM) analogs in which either the 2-NH was methylated to NMe, the 3-OH was methylated to OMe, or both were methylated simultaneously. The aim of the study was to determine how such modifications in the membrane interfacial region of the molecules affected interlipid interactions in bilayer membranes. Measuring DPH anisotropy in vesicle membranes prepared from the SM analogs, we observed that methylation decreased gel-phase stability and increased fluid phase disorder, when compared to PSM. Methylation of the 2-NH had the largest effect on gel-phase instability (T(m) was lowered by ~7°C). Atomistic molecular dynamics simulations showed that fluid phase bilayers with methylated SM analogs were more expanded but thinner compared to PSM bilayers. It was further revealed that 3-OH methylation dramatically attenuated hydrogen bonding also via the amide nitrogen, whereas 2-NH methylation did not similarly affect hydrogen bonding via the 3-OH. The interactions of sterols with the methylated SM analogs were markedly affected. 3-OH methylation almost completely eliminated the capacity of the SM analog to form sterol-enriched ordered domains, whereas the 2-NH methylated SM analog formed sterol-enriched domains but these were less thermostable (and thus less ordered) than the domains formed by PSM. Cholestatrienol affinity to bilayers containing methylated SM analogs was also markedly reduced as compared to its affinity for bilayers containing PSM. Molecular dynamics simulations revealed further that cholesterol's bilayer location was deeper in PSM bilayers as compared to the location in bilayers made from methylated SM analogs. This study shows that the interfacial properties of SMs are very important for interlipid interactions and the formation of laterally ordered domains in complex bilayers.  相似文献   

19.
Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221-243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol efflux versus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号