首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basik M  Mousses S  Trent J 《BioTechniques》2003,35(3):580-2, 584, 586 passim
New technologies have greatly increased the scientist's ability to investigate complex molecular interactions that occur in cancer development and to identify genetic alterations and drug targets. However, these new capabilities have not accelerated drug development efforts; rather, they may be contributing to increased research and development costs because the large number of new drug targets discovered through genomics need to be investigated in great detail to characterize their putative functional involvement in the disease process. One solution to this bottleneck in functional analysis is the use of high-throughput technologies to produce efficient processes that can rapidly handle the large flood of information at every stage of disease. This review examines the use of new and emerging DNA, tissue, and live-cell transfection microarray technologies that can be used to discover, validate, and translate information resulting from the completion of the Human Genome Project.  相似文献   

2.
With the completion of the Human Genome Project in 2003, many new projects to sequence bacterial genomes were started and soon many complete bacterial genome sequences were available. The sequenced genomes of pathogenic bacteria provide useful information for understanding host-pathogen interactions. These data prove to be a new weapon in fighting against pathogenic bacteria by providing information about potential drug targets. But the limitation of computational tools for finding potential drug targets has hindered the process and further experimental analysis. There are many in silico approaches proposed for finding drug targets but only few have been automated. One such approach finds essential genes in bacterial genomes with no human homologue and predicts these as potential drug targets. The same approach is used in our tool. T-iDT, a tool for the identification of drug targets, finds essential genes by comparing a bacterial gene set against DEG (Database of Essential Genes) and excludes homologue genes by comparing against a human protein database. The tool predicts both the set of essential genes as well as potential target genes for the given genome. The tool was tested with Mycobacterium tuberculosis and results were validated. With default parameters, the tool predicted 236 essential genes and 52 genes to encode potential drug targets. A pathway-based approach was used to validate these potential drug target genes. The pathway in which the products of these genes are involved was determined. Our analysis shows that almost all these pathways are very essential for the bacterial survival and hence these genes encode possible drug targets. Our tool provides a fast method for finding possible drug targets in bacterial genomes with varying stringency level. The tool will be helpful in finding possible drug targets in various pathogenic organisms and can be used for further analysis in novel therapeutic drug development. The tool can be downloaded from http://www.milser.co.in/research.htm and http://www.srmbioinformatics.edu.in/ forum.htm.  相似文献   

3.
The main problem regarding the chemotherapy of filariasis is that no safe and effective drug is available yet to combat the adult human filarial worms. Setaria cervi, the causal organism of setariasis and lumbar paralysis in cattle, is routinely employed as a model organism for conducting biochemical and enzymatic studies on filarial parasites. In view of the practical difficulties in procuring human strains of Wuchereria bancrofti and Brugia malayi for drug screening, the bovine filarial parasite S. cervi, resembling the human species in having microfilarial periodicity and chemotherapeutic response to known antifilarial agents, is widely used as a model in such studies. For a rational approach to antifilarial chemotherapy, knowledge of the biochemical composition and metabolic pathways of this helminth parasite may be of paramount importance, so that more potent antifilarial agents based on specific drug targets can be identified in drug discovery programmes. The present review provides an update on the biochemistry of the important metabolic pathways functioning within this potentially important bovine parasite, that have so far been studied, and on those that need to be investigated further so as to identify novel drug targets that can be exploited for designing new antifilarial drugs.  相似文献   

4.
MOTIVATION: A very promising approach in drug discovery involves the integration of available biomedical data through mathematical modelling and data mining. We have developed a method called optimization program for drug discovery (OPDD) that allows new enzyme targets to be identified in enzymopathies through the integration of metabolic models and biomedical data in a mathematical optimization program. The method involves four steps: (i) collection of the necessary information about the metabolic system and disease; (ii) translation of the information into mathematical terms; (iii) computation of the optimization programs prioritizing the solutions that propose the inhibition of a reduced number of enzymes and (iv) application of additional biomedical criteria to select and classify the solutions. Each solution consists of a set of predicted values for metabolites, initial substrates and enzyme activities, which describe a biologically acceptable steady state of the system that shifts the pathologic state towards a healthy state. RESULTS: The OPDD was used to detect target enzymes in an enzymopathy, the human hyperuricemia. An existing S-system model and bibliographic information about the disease were used. The method detected six single-target enzyme solutions involving dietary modification, one of them coinciding with the conventional clinical treatment using allopurinol. The OPDD detected a large number of possible solutions involving two enzyme targets. All except one contained one of the previously detected six enzyme targets. The purpose of this work was not to obtain solutions for direct clinical implementation but to illustrate how increasing levels of biomedical information can be integrated together with mathematical models in drug discovery. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

5.
Complete genome sequences of several pathogenic bacteria have been determined, and many more such projects are currently under way. While these data potentially contain all the determinants of host-pathogen interactions and possible drug targets, computational tools for selecting suitable candidates for further experimental analyses are currently limited. Detection of bacterial genes that are non-homologous to human genes, and are essential for the survival of the pathogen represents a promising means of identifying novel drug targets. We used a differential pathway analyses approach (based on KEGG data) to identify essential genes from Pseudomonas aeruginosa. Our approach identified 214 unique enzymes in P. aeruginosa that may be potential drug targets and can be considered for rational drug design. About 40% of these putative targets have been reported as essential by transposon mutagenesis data elsewhere. Homology model for one of the proteins (LpxC) is presented as a case study and can be explored for in silico docking with suitable inhibitors. This approach is a step towards facilitating the search for new antibiotics.  相似文献   

6.
New inhibitors are urgently needed to overcome the burgeoning problem of drug resistance in the treatment of Plasmodium falciparum infection. Targeting the folate pathway has proved to be a powerful strategy for drug development against rapidly multiplying systems such as cancer cells and microorganisms. Antifolates have long been used for malaria treatment but, despite their success, much less is known about parasite folate metabolism than about that of the human host. In this article, we focus on folate enzymes used clinically as anticancer drug targets, in addition to those that have potential to be used as drug targets, for which there are inhibitors at various stages of development. We discuss how this information could lead to the identification of new targets in malaria parasites.  相似文献   

7.
8.
Availability of genome sequences of pathogens has provided a tremendous amount of information that can be useful in drug target and vaccine target identification. One of the recently adopted strategies is based on a subtractive genomics approach, in which the subtraction dataset between the host and pathogen genome provides information for a set of genes that are likely to be essential to the pathogen but absent in the host. This approach has been used successfully in recent times to identify essential genes in Pseudomonas aeruginosa. We have used the same methodology to analyse the whole genome sequence of the human gastric pathogen Helicobacter pylori. Our analysis revealed that out of the 1590 coding sequences of the pathogen, 40 represent essential genes that have no human homolog. We have further analysed these 40 genes by the protein sequence databases to list some 10 genes whose products are possibly exposed on the pathogen surface. This preliminary work reported here identifies a small subset of the Helicobacter proteome that might be investigated further for identifying potential drug and vaccine targets in this pathogen.  相似文献   

9.
Technologies which efficiently dissect gene function and validate therapeutic targets are of great value in the post-sequencing era of the human genome project. The antisense oligonucleotide approach can directly use genomic sequence information, in a relatively time and cost effective manner, to define a gene's function and/or validate it as a potential therapeutic target. Antisense oligonucleotide inhibitors of gene expression may be applied to cellular assays (in vitro) or animal models of disease (in vivo). Information generated by this approach may then direct or supplement traditional drug discovery programs, or support development of the antisense oligonucleotide inhibitor, used to validate the target, as a drug.  相似文献   

10.
Infectious diseases are the leading causes of death worldwide. Hence, there is a need to develop new antimicrobial agents. Traditional method of drug discovery is time consuming and yields a few drug targets with little intracellular information for guiding target selection. Thus, focus in drug development has been shifted to computational comparative genomics for identifying novel drug targets. Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. Availability of L. interrogans serovars and human genome sequences facilitated to search for novel drug targets using bioinformatics tools. The genome sequence of L. interrogans serovar Copenhageni has 5,124 genes while that of serovar Lai has 4,727 genes. Through subtractive genomic approach 218 genes in serovar Copenhageni and 158 genes in serovar Lai have been identified as putative drug targets. Comparative genomic approach had revealed that 88 drug targets were common to both the serovars. Pathway analysis using the Kyoto Encyclopaedia of Genes and Genomes revealed that 66 targets are enzymes and 22 are non-enzymes. Sixty two common drug targets were predicted to be localized in cytoplasm and 16 were surface proteins. The identified potential drug targets form a platform for further investigation in discovery of novel therapeutic compounds against Leptospira.  相似文献   

11.
Access to the complete human genome sequence as well as to the complete sequences of pathogenic organisms provides information that can result in an avalanche of therapeutic targets. Structure-based design is one of the first techniques to be used in drug design. Structure based design refers specifically to finding and complementing the 3D structure (binding and/or active site) of a target molecule such as a receptor protein. The aim of this review is to give an outline of studies in the field of structure based drug design that has helped in the discovery process of new drugs. The emphasis will be on comparative/homology modeling.  相似文献   

12.
Technologies which efficiently dissect gene function and validate therapeutic targets are of great value in the post-sequencing era of the human genome project. The antisense oligonucleotide approach can directly use genomic sequence information, in a relatively time and cost effective manner, to define a gene's function and/or validate it as a potential therapeutic target. Antisense oligonucleotide inhibitors of gene expression may be applied to cellular assays (in vitro) or animal models of disease (in vivo). Information generated by this approach may then direct or supplement traditional drug discovery programs, or support development of the antisense oligonucleotide inhibitor, used to validate the target, as a drug.  相似文献   

13.
Experiments conducted on human tissue samples are a key component of modern drug discovery programs and complement the use of animal tissue based assays in this process. Such studies can (i) enhance our understanding of disease pathophysiology, (ii) increase (or decrease) confidence that modulating the function of particular molecular targets will have therapeutic benefit (iii) allow comparison of the activities of different agents on particular mechanisms/processes and (iv) provide information on the potential safety risks associated with targets. All of this information is critical in identifying the targets that are most likely to deliver efficacious and safe medicines to address unmet clinical needs. With the introduction of new technologies, human tissue samples are also increasingly being incorporated into drug project screening cascades, including their use in high throughput assays. Improved access to human tissue would undoubtedly further extend the utility of this valuable resource in the drug discovery process.  相似文献   

14.
Complete genome sequences of several pathogenic bacteria have been determined, and many more such projects are currently under way. While these data potentially contain all the determinants of host-pathogen interactions and possible drug targets, computational tools for selecting suitable candidates for further experimental analyses are currently limited. Detection of bacterial genes that are non-homologous to human genes, and are essential for the survival of the pathogen represents a promising means of identifying novel drug targets. We have used three-way genome comparisons to identify essential genes from Pseudomonas aeruginosa. Our approach identified 306 essential genes that may be considered as potential drug targets. The resultant analyses are in good agreement with the results of systematic gene deletion experiments. This approach enables rapid potential drug target identification, thereby greatly facilitating the search for new antibiotics. These results underscore the utility of large genomic databases for in silico systematic drug target identification in the post-genomic era.  相似文献   

15.
The flood of new genomic sequence information together with technological innovations in protein structure determination have led to worldwide structural genomics (SG) initiatives. The goals of SG initiatives are to accelerate the process of protein structure determination, to fill in protein fold space and to provide information about the function of uncharacterized proteins. In the long-term, these outcomes are likely to impact on medical biotechnology and drug discovery, leading to a better understanding of disease as well as the development of new therapeutics. Here we describe the high throughput pipeline established at the University of Queensland in Australia. In this focused pipeline, the targets for structure determination are proteins that are expressed in mouse macrophage cells and that are inferred to have a role in innate immunity. The aim is to characterize the molecular structure and the biochemical and cellular function of these targets by using a parallel processing pipeline. The pipeline is designed to work with tens to hundreds of target gene products and comprises target selection, cloning, expression, purification, crystallization and structure determination. The structures from this pipeline will provide insights into the function of previously uncharacterized macrophage proteins and could lead to the validation of new drug targets for chronic obstructive pulmonary disease and arthritis.  相似文献   

16.
The conventional paradigm for developing new treatments for disease mainly involves either the discovery of new drug targets, or finding new, improved drugs for old targets. However, an ion channel found only in invertebrates offers the potential of a completely new paradigm in which an established drug target can be re-engineered to serve as a new candidate therapeutic agent. The L-glutamate-gated chloride channels (GluCls) of invertebrates are absent from vertebrate genomes, offering the opportunity to introduce this exogenous, inhibitory, L-glutamate receptor into vertebrate neuronal circuits either as a tool with which to study neural networks, or a candidate therapy. Epileptic seizures can involve L-glutamate-induced hyper-excitation and toxicity. Variant GluCls, with their inhibitory responses to L-glutamate, when engineered into human neurons, might counter the excitotoxic effects of excess L-glutamate. In reviewing recent studies on model organisms, it appears that this approach might offer a new paradigm for the development of candidate therapeutics for epilepsy.  相似文献   

17.
Target discovery and validation in the post-genomic era   总被引:3,自引:0,他引:3  
The recent publication of the human genome sequence provides an opportunity both to combat diseases that are presently considered as pharmaceutically intractable and also to improve current therapies for many common human diseases. The identification of every human gene by ongoing bioinformatic efforts has the potential, when combined with functional genomic approaches, to pinpoint the molecular basis of every human disease, and to discover appropriate intervention points. This exciting prospect is directly relevant to the successful development of effective therapeutics because the past record of drug discovery suggests that 30%–40% of experimental drugs fail because an inappropriate biological target was pursued. The major impact of genomic information may therefore be to reduce this biological failure rate by earlier definition of drug targets related to disease susceptibility or progression. This paper briefly reviews some of the approaches that can be used to identify biologically relevant drug targets.  相似文献   

18.
With the Entamoeba genome essentially complete, the organism can be studied from a whole genome standpoint. The understanding of cellular mechanisms and interactions between cellular components is instrumental to the development of new effective drugs and vaccines. Metabolic pathway analysis is becoming increasingly important for assessing inherent network properties in reconstructed biochemical reaction networks. Metabolic pathways illustrate how proteins work in concert to produce cellular compounds or to transmit information at different levels. Identification of drug targets in E. histolytica through metabolic pathway analysis promises to be a novel approach in this direction. This article focuses on the identification of drug targets by subjecting the Entamoeba genome to BLAST with the e-value inclusion threshold set to 0.005 and choke point analysis. A total of 86.9 percent of proposed drug targets with biological evidence are chokepoint reactions in Entamoeba genome database.  相似文献   

19.
NMR screening in drug discovery   总被引:2,自引:0,他引:2  
NMR methods in drug discovery have traditionally been used to obtain structural information for drug targets or target-ligand complexes. Recently, it has been shown that NMR may be used as an alternative approach for identification of ligands that bind to protein drug targets, shifting the emphasis of many NMR laboratories towards screening and design of potential drug molecules, rather than structural characterization.  相似文献   

20.
The decrease in new drug applications and approvals over the past several years results from an underlying crisis in drug target identification and validation. Model organisms are being used to address this problem, in combination with novel approaches such as the International HapMap Project. What has been underappreciated is that discovery of new drug targets can also be revived by traditional Mendelian genetics. A large fraction of the human gene repertoire remains phenotypically uncharacterized, and is likely to encode many unanticipated and novel phenotypes that will be of interest to pharmaceutical and biotechnological drug developers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号