首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased bone resorption is a major characteristic of multiple myeloma and is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activator of NF-kappaB ligand (RANKL) and decreasing osteoprotegerin expression within the bone marrow microenvironment, thereby stimulating the central pathway for osteoclast formation and activation. In addition, they produce the chemokines MIP-1alpha, MIP-1beta, and SDF-1alpha, which also increase osteoclast activity. On the other hand, myeloma cells suppress osteoblast function by the secretion of osteoblast inhibiting factors, e.g., the Wnt inhibitors DKK-1 and sFRP-2. Moreover, they inhibit differentiation of osteoblast precursors and induce apoptosis in osteoblasts. The resulting bone destruction releases several cytokines, which in turn promote myeloma cell growth. Therefore, the inhibition of bone resorption could stop this vicious circle and not only decrease myeloma bone disease, but also the tumor progression.  相似文献   

2.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

3.
Receptor activator of NF‐κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter‐driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)‐induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.  相似文献   

4.
Excessive osteoclast formation is one of the important pathological features of inflammatory bone destruction. Interleukin-37 (IL-37) is an anti-inflammatory agent that is present throughout the body, but it displays low physiological retention. In our study, high levels of the IL-37 protein were detected in clinical specimens from patients with bone infections. However, the impact of IL-37 on osteoclast formation remains unclear. Next, IL-37 alleviated the inflammatory bone destruction in the mouse in vivo. We used receptor activator of nuclear factor-κB ligand and lipopolysaccharide to trigger osteoclastogenesis under physiological and pathological conditions to observe the role of IL-37 in this process and explore the potential mechanism of this phenomenon. In both induction models, IL-37 exerted inhibitory effects on osteoclast differentiation and bone resorption. Furthermore, IL-37 decreased the phosphorylation of inhibitor of κBα and p65 and the expression of nuclear factor of activated T cells c1, while the dimerization inhibitor of myeloid differentiation factor 88 reversed the effects. These data provide evidence that IL-37 modulates osteoclastogenesis and a theoretical basis for the clinical application of IL-37 as a treatment for bone loss–related diseases.  相似文献   

5.
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.  相似文献   

6.
Inflammatory bowel disease(IBD)has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear.In the past decade,gut microbiota dysbiosis has con-sistently been associated with IBD.Although many IBD-associated dysbiosis have not been proven to be a cause or an effect of IBD,it is often hypothesized that at least some of alteration in microbiome is protective or causative.In this article,we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models.Specifically,we reviewed the potential protective bac-terial pathways and species against IBD,as well as the potential causative bacterial pathways and species of IBD.We also reviewed the potential roles of some members of mycobiome and virome in IBD.Lastly,we covered the current status of therapeutic approaches targeting microbiome,which is a promising strategy to alleviate and cure this inflammatory disease.  相似文献   

7.
Neural transplantation, a mode of cellular replacement, has been used as a therapeutic trial for Parkinson's disease. Studies indicate that tonic release of the metabolites from the graft that can be utilized by the host brain, is likely to be the major mechanism responsible for the therapeutic effect. The use of fetal tissue is complicated by ethical controversy and immunological incompatibility. Autografting adult tissue has not been successful mainly due to poor survival. Genetically engineered cells are promising alternative sources of donor cells. We have investigated the potential of primary skin fibroblasts as donor cells for intracerebral grafting. Primary skin fibroblasts survive in the brain and remain in situ. A number of genes (nerve growth factor, tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyltransferase) have been successfully introduced and expressed in the primary fibroblasts. The L-dopa-secreting primary fibroblasts exhibited a behavioral effect in a rat model of Parkinson's disease up to 8 weeks after being grafted into denervated striatum. Factors that can maximize gene transfer, transgene expression, and fibroblast survival in the brain make up the future direction of investigation.  相似文献   

8.
9.
δ阿片类物质的抗缺血心脏保护机制和临床应用前景   总被引:1,自引:0,他引:1  
阿片类物质尤其是δ阿片受体激动剂,在整体动物、离体器官、培养的细胞模型,以及人的心脏组织中能够模拟缺血预适应,对抗心肌缺血-再灌注损伤。本文介绍了近年来δ阿片类物质在心肌缺血-再灌注中的作用,其心脏保护作用涉及的信号调控机制的研究进展,以及阿片类药物治疗缺血性心脏疾病的临床应用前景。  相似文献   

10.
细胞因子可介导许多生物学过程并受到机体的严格调节,其调节的失控可引发一系列疾病如自身免疫炎症和肿瘤。在过去的十几年中,一些能够有效调节细胞因子生物学作用的生物制剂如重组抗炎细胞因子、细胞因子受体以及中和性抗体等被广泛应用到由细胞因子失调引起的相关疾病的治疗。尤其是近年来,一些具有创新性的靶向细胞因子的新型生物制剂在不断涌现。文中对近年来国际上靶向炎症细胞因子(TNF-α、IL-1β、IL-6、IL-17)的生物制剂的研发和临床应用的相关进展进行了综述,指出其副作用和应用风险,并结合其他学者和自己的研究工作提出减少副作用和风险的途径和方法。利用现代生物技术提高抗细胞因子生物制剂针对炎症或肿瘤组织的特异性,是靶向炎性细胞因子生物制剂未来的重要发展方向。  相似文献   

11.
Developments of stem cell biology provide new approaches for understanding the mechanisms of a number of diseases, including osteoporosis. In this minireview, we highlight two areas that related to stem cells in bone biology. Recent discovery of the role of osteoclast and their stem cells leads to developing a new approach for treatment of osteoporosis with the initial stimulation of cells in osteoclast lineage and followed by sequentially enhanced bone formation. Stimulation on both sides in bone remodeling is expected to achieve a long term effect on bone formation. For bone regeneration, multiple disciplinary collaborations among bone biologists, stem cell biologists and biomaterial scientists are necessary to successfully develop an integrated stem cell therapy that should include stem cells, suitable scaffolds and bioactive factors/small molecular compounds.  相似文献   

12.
Osteoclast (OC) is the only cell involved in bone resorption. Dysfunction of OCs leads to a variety of bone diseases. Ligustilide (LIG) is the main component of the volatile oil isolated and purified from Angelica sinensis. LIG exerts many pharmacological activities, but its effects on osteoclastogenesis and bone resorption are still unclear. Our study showed that LIG inhibited receptor activator of nuclear factor-κB (NF-κB) ligand-induced OC formation and activation in a dose-dependent manner. Additionally, LIG downregulated the messenger RNA (mRNA) expression of OC-specific genes, such as V-ATPase d2, tartrate-resistant acid phosphatase, a dendritic cell-specific transmembrane protein, cathepsin K, and nuclear factor of activated T cells cl. Furthermore, LIG blocked the activation of NF-κB/extracellular signal-regulated kinase/p38/immunoreceptor tyrosine-based activation motif signaling pathways. Crucially, the expression of tumor necrosis factor receptor-associated factor 6 proteins and the expression of receptor activator of NF-κB mRNA were inhibited by LIG. However, LIG did not affect the formation and mineralization of osteoblasts. Collectively, this observation suggests that LIG may serve as a promising agent for the prevention and treatment of diseases caused by abnormal bone resorption.  相似文献   

13.
Gut mucosal barriers, including chemical and physical barriers, spatially separate the gut microbiota from the host immune system to prevent unwanted immune responses that could lead to intestinal inflammation. In inflammatory bowel disease (IBD), there is mucosal barrier dysfunction coupled with immune dysregulation and dysbiosis. The discovery of exosomes as regulators of vital functions in both physiological and pathological processes has generated much research interest. Interestingly, exosomes not only serve as natural nanocarriers for the delivery of functional RNAs, proteins, and synthetic drugs or molecules, but also show potential for clinical applications in tissue repair and regeneration as well as disease diagnosis and prognosis. Biological or chemical modification of exosomes can broaden, change and enhance their therapeutic capability. We review the modulatory effects of exosomal proteins, RNAs and lipids on IBD components such as immune cells, the gut microbiota and the intestinal mucosal barrier. Mechanisms involved in regulating these factors towards attenuating IBD have been explored in several studies employing exosomes derived from different sources. We discuss the potential utility of exosomes as diagnostic markers and drug delivery systems, as well as the application of modified exosomes in IBD.  相似文献   

14.
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.  相似文献   

15.
16.
The intestinal epithelia consists of four lineages of differentiated cells, all of which arise from stem cells residing in the intestinal crypt. For proper regeneration from epithelial damage, both expansion of the epithelial cell number and appropriate regulation of lineage differentiation from the remaining stem cells are thought to be required. In a series of studies, we have shown that bone-marrow derived cells could promote the regeneration of damaged epithelia in the human intestinal tract. Donor-derived epithelial cells substantially repopulated the gastrointestinal tract of bone-marrow transplant recipients during epithelial regeneration after graft-versus-host disease. Furthermore, precise analysis of epithelial cell lineages revealed that during epithelial regeneration, secretory lineage epithelial cells that originated from bone-marrow significantly increased in number. These findings may lead to a novel therapy to repair damaged intestinal epithelia using bone marrow cells, and provide an alternative therapy for refractory inflammatory bowel diseases.  相似文献   

17.
Breast cancer cells preferentially metastasize to bone, leading to the formation of primarily osteolytic lesions. Osteoprotegerin (OPG) plays multifactorial roles in the development of osteolytic bone metastases. An increase in the ratio of receptor activator of nuclear factor kappaB ligand (RANKL) to OPG increases osteoclastogenesis within the bone microenvironment. OPG also acts as a survival factor for cancer cells by protecting them from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis. This study compares OPG production in vitro in a number of breast cancer cell lines exhibiting both differences in metastatic capacity and in preferential metastasis to bone. Our studies demonstrated that OPG expression by MDA-231, MDA-MET, and MDA-231/K cancer cells was directly correlated with bone specific homing and colonization potential but not with metastasis of cancer cells to other organs; both in IL-1 beta stimulated and control cells. We also demonstrated expression of other bone-related markers including type I collagen, osteocalcin, osteopontin, and Runx2 in these cells. However, the generally lower expression of these markers in the bone selective cell line MDA-MET suggested that increased OPG expression in the bone specific variant was not merely a consequence of enhanced osteomimicry by these cells but that it has a significant role in the metastatic process. Co-culture of breast cancer cells with osteoblastic cells (hFOB 1.19) led to an overall downregulation in OPG production, which was not affected by the bone homing and colonization potential of the cell lines, suggesting that OPG alone is not indicative of osteolytic bone activity by breast cancer cells.  相似文献   

18.
Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease.  相似文献   

19.
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.  相似文献   

20.
Rheumatoid arthritis represents an excellent model in which to gain insights into the local and systemic effects of joint inflammation on skeletal tissues. Three forms of bone disease have been described in rheumatoid arthritis. These include: focal bone loss affecting the immediate subchondral bone and bone at the joint margins; periarticular osteopenia adjacent to inflamed joints; and generalized osteoporosis involving the axial and appendicular skeleton. Although these three forms of bone loss have several features in common, careful histomorphometric and histopathological analysis of bone tissues from different skeletal sites, as well as the use of urinary and serum biochemical markers of bone remodeling, provide compelling evidence that different mechanisms are involved in their pathogenesis. An understanding of these distinct pathological forms of bone loss has relevance not only with respect to gaining insights into the different pathological mechanisms, but also for developing specific and effective strategies for preventing the different forms of bone loss in rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号