首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of DNA polymerase from Thermus thermophilus B35 (Tte-pol) with deoxynucleoside triphosphates in the presence of different divalent metal ions has been studied. DNA synthesis and competitive inhibition of the polymerase reaction by non-complementary dNTPs are described with corresponding kinetic schemes. The co-factor properties of some metals (Mg2+, Mn2+, Co2+, Ni2+, Cu2+, Ca2+, Cd2+, and Zn2+) were investigated, and their activating concentration ranges were determined. It was found that kcat values are significantly decreased and Km values slowly decrease when Mn2+ displaces Mg2+. The value of Kd for DNA template-primer is Me2+-independent, whereas Kd values for non-complementary dNTPs decrease in the presence of Mn2+. Tte-pol processivity but not DNA synthesis efficiency is Me2+-type independent.  相似文献   

2.
J Luo  F Barany 《Nucleic acids research》1996,24(15):3079-3085
DNA ligases play a pivotal role in DNA replication, repair and recombination. Reactions catalyzed by DNA ligases consist of three steps: adenylation of the ligase in the presence of ATP or NAD+, transferring the adenylate moiety to the 5'-phosphate of the nicked DNA substrate (deadenylation) and sealing the nick through the formation of a phosphodiester bond. Thermus thermophilus HB8 DNA ligase (Tth DNA ligase) differs from mesophilic ATP-dependent DNA ligases in three ways: (i) it is NAD+ dependent; (ii) its optimal temperature is 65 instead of 37 degrees C; (iii) it has higher fidelity than T4 DNA ligase. In order to understand the structural basis underlying the reaction mechanism of Tth DNA ligase, we performed site-directed mutagenesis studies on nine selected amino acid residues that are highly conserved in bacterial DNA ligases. Examination of these site-specific mutants revealed that: residue K118 plays an essential role in the adenylation step; residue D120 may facilitate the deadenylation step; residues G339 and C433 may be involved in formation of the phosphodiester bond. This evidence indicates that a previously identified KXDG motif for adenylation of eukaryotic DNA ligases [Tomkinson, A.E., Totty, N.F., Ginsburg, M. and Lindahl, T. (1991) Proc. Natl. Acad. Sci. USA, 88, 400-404] is also the adenylation site for NAD+-dependent bacterial DNA ligases. In a companion paper, we demonstrate that mutations at a different Lys residue, K294, may modulate the fidelity of Tth DNA ligase.  相似文献   

3.
4.
We have previously identified a DNA ligase (LigTk) from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. The enzyme is the only characterized ATP-dependent DNA ligase from a hyperthermophile, and allows the analysis of enzymatic DNA ligation reactions at temperatures above the melting point of the substrates. Here we have focused on the interactions of LigTk with various DNA substrates, and its specificities toward metal cations. LigTk could utilize Mg2+, Mn2+, Sr2+ and Ca2+ as a metal cation, but not Co2+, Zn2+, Ni2+, or Cu2+. The enzyme displayed typical Michaelis-Menten steady-state kinetics with an apparent Km of 1.4 microm for nicked DNA. The kcat value of the enzyme was 0.11*s-1. Using various 3' hydroxyl group donors (L-DNA) and 5' phosphate group donors (R-DNA), we could detect ligation products as short as 16 nucleotides, the products of 7 + 9 nucleotide or 8 + 8 nucleotide combinations at 40 degrees C. An elevation in temperature led to a decrease in reaction efficiency when short oligonucleotides were used, suggesting that the formation of a nicked, double-stranded DNA substrate preceded enzyme-substrate recognition. LigTk was not inhibited by the addition of excess duplex DNA, implying that the enzyme did not bind strongly to the double-stranded ligation product after nick-sealing. In terms of reaction fidelity, LigTk was found to ligate various substrates with mismatched base-pairing at the 5' end of the nick, but did not show activity towards the 3' mismatched substrates. LigTk could not seal substrates with a 1-nucleotide or 2-nucleotide gap. Small amounts of ligation products were detected with DNA substrates containing a single nucleotide insertion, relatively more with the 5' insertions. The results revealed the importance of proper base-pairing at the 3' hydroxyl side of the nick for the ligation reaction by LigTk.  相似文献   

5.
A PCR protocol was used to identify and sequence a gene encoding a DNA ligase from Thermococcus fumicolans (Tfu). The recombinant enzyme, expressed in Escherichia coli BL21(DE3) pLysS, was purified to homogeneity and characterized. The optimum temperature and pH of Tfu DNA ligase were 65 degrees C and 7.0, respectively. The optimum concentration of MgCl2, which is indispensable for the enzyme activity, was 2 mM. We showed that Tfu DNA ligase displayed nick joining and blunt-end ligation activity using either ATP or NAD+, as a cofactor. In addition, our results would suggest that Tfu DNA ligase is likely to use the same catalytic residues with the two cofactors. The ability for DNA ligases, to use either ATP or NAD+, as a cofactor, appears to be specific of DNA ligases from Thermococcales, an order of hyperthermophilic microorganisms that belongs to the euryarchaeotal branch of the archaea domain.  相似文献   

6.
A gene encoding a putative ATP-dependent DNA ligase was identified in the genome of the hyperthermophilic archaeon Sulfolobus shibatae and expressed in Escherichia coli. The 601 amino acid recombinant polypeptide was a monomeric protein capable of strand joining on a singly nicked DNA substrate in the presence of ATP ( K(m)=34 micro mu) and a divalent cation (Mn(2+), Mg(2+), or Ca(2+)). dATP was partially active in supporting ligation catalyzed by the protein, but GTP, CTP, UTP, dGTP, dCTP, dTTP, and NAD(+) were inactive. The cloned Ssh ligase showed an unusual metal cofactor requirement; it was significantly more active in the presence of Mn(2+) than in the presence of Mg(2+) or Ca(2+). Unexpectedly, the native Ssh ligase preferred Mg(2+) and Ca(2+) rather than Mn(2+). Both native and recombinant enzymes displayed optimal nick-joining activity at 60-80 degrees C. Ssh ligase discriminated against substrates containing mismatches on the 3'-side of nick junction and was more tolerant of mismatches at the 5'-end than of those at the penultimate 5'-end. The enzyme showed little activity on a 1-nucleotide gapped substrate. This is the first biochemical study of a DNA ligase from the crenarchaeotal branch of the archaea domain.  相似文献   

7.
A DNA ligase gene from the hyperthermophilic bacterium Aquifex pyrophilus (Ap) was cloned and sequenced. An open reading frame of 2,157 bp that codes for a 82-kDa protein showed 40%-60% homology with a series of NAD+-dependent DNA ligases from different organisms. The recombinant enzyme Ap DNA ligase expressed in Escherichia coli was purified to homogeneity and characterized. The activity of Ap DNA ligase gradually increased in proportion to the concentration of monovalent salt up to 200 mM NaCl, 150 mM KCl, 200 mM NH4Cl, and 350 mM potassium glutamate. The optimum temperature and pH of Ap DNA ligase were greater than 65 degrees C and 8.0-8.6, respectively, for nick-closing activity. More than 75% of the ligation activity was retained after incubation at 95 degrees C for 60 min, whereas the half-lives of Thermus aquaticus and Escherichia coli DNA ligases at 95 degrees C were < or =15 min and 5 min, respectively. Thermostable Ap DNA ligase was applied to repeat expansion detection (RED) and could be a useful enzyme in DNA diagnostics.  相似文献   

8.
DNA ligation catalyzed by all DNA ligases involves two intermediary steps, the formation of the ligase-AMP and the AMP-DNA complexes. A method was developed to purify and analyze the AMP-DNA intermediate from the DNA ligation reaction catalyzed by DNA ligases. This AMP-DNA complex was maximally accumulated by preincubation of human DNA ligase I or II with ATP, followed by interaction with the DNA substrate for 5 s at 0 degrees C. The gel-purified AMP-DNA complex maintained its property as a ligation intermediate. The AMP was directly linked to the 5'-phosphate of DNA with a pyrophosphate bond. The successive ligation reaction following the AMP-DNA complex formation required DNA ligase and Mg2+ ion but was inhibited by ATP and pyridoxal 5'-phosphate, indicating that the availability of the AMP binding site in the enzyme is essential for the completion of the reaction. Furthermore, the formation of the AMP-DNA complex and the subsequent DNA ligation were substrate specific for human DNA ligases I and II. These data, together with previously reported results, suggest that a major difference between human DNA ligases I and II is in their DNA-binding domains. The methods make it convenient to study in depth the kinetics of the overall DNA ligation.  相似文献   

9.
The cloning, overexpression and characterization of a cold-adapted DNA ligase from the Antarctic sea water bacterium Pseudoalteromonas haloplanktis are described. Protein sequence analysis revealed that the cold-adapted Ph DNA ligase shows a significant level of sequence similarity to other NAD+-dependent DNA ligases and contains several previously described sequence motifs. Also, a decreased level of arginine and proline residues in Ph DNA ligase could be involved in the cold-adaptation strategy. Moreover, 3D modelling of the N-terminal domain of Ph DNA ligase clearly indicates that this domain is destabilized compared with its thermophilic homologue. The recombinant Ph DNA ligase was overexpressed in Escherichia coli and purified to homogeneity. Mass spectroscopy experiments indicated that the purified enzyme is mainly in an adenylated form with a molecular mass of 74 593 Da. Ph DNA ligase shows similar overall catalytic properties to other NAD+-dependent DNA ligases but is a cold-adapted enzyme as its catalytic efficiency (kcat/Km) at low and moderate temperatures is higher than that of its mesophilic counterpart E. coli DNA ligase. A kinetic comparison of three enzymes adapted to different temperatures (P. haloplanktis, E. coli and Thermus scotoductus DNA ligases) indicated that an increased kcat is the most important adaptive parameter for enzymatic activity at low temperatures, whereas a decreased Km for the nicked DNA substrate seems to allow T. scotoductus DNA ligase to work efficiently at high temperatures. Besides being useful for investigation of the adaptation of enzymes to extreme temperatures, P. haloplanktis DNA ligase, which is very efficient at low temperatures, offers a novel tool for biotechnology.  相似文献   

10.
B C Shenoy  H G Wood 《FASEB journal》1988,2(8):2396-2401
The synthetase that attaches biotin to the aposubunit of transcarboxylase (biotin-[methylmalonyl-CoA-carboxyltransferase]ligase) (EC 6.3.4.9) was purified to homogeneity by ion-exchange chromatography on cellulose DE-52 and CM-cellulose. The synthetase is a monomer of molecular weight 30,000. The pH and temperature optima for the synthetase are 6.0 and 37 degrees C, respectively. The apparent Km for the substrates ATP, biotin, and apo 1.3 S subunit of apotranscarboxylase are 38, 2.0, and 0.9 microM, respectively. Ni2+, Co2+, Zn2+, or Mn2+ could replace Mg2+ in the reaction. The affinity of synthetase toward metals is as follows: Zn2+ greater than Ni2+ greater than Mn2+ greater than Co2+ greater than Mg2+, and the activity with Zn2+ was much greater than that with the other divalent metals. EDTA completely inactivates the enzyme. The metals are necessary not only for the catalytic activity but also for the storage stability of the enzyme. The synthetase shows absolute specificity toward ATP.  相似文献   

11.
Archaea encode a DNA ligase composed of a C-terminal catalytic domain typical of ATP-dependent ligases plus an N-terminal domain similar to that found in eukaryotic cellular and poxvirus DNA ligases. All archaeal DNA ligases characterized to date have ATP-dependent adenylyltransferase and nick-joining activities. However, recent reports of dual-specificity ATP/NAD+ ligases in two Thermococcus species and Pyrococcus abyssi and an ATP/ADP ligase in Aeropyrum pernix raise the prospect that certain archaeal enzymes might exemplify an undifferentiated ancestral stage in the evolution of ligase substrate specificity. Here we analyze the biochemical properties of Pyrococcus horikoshii DNA ligase. P. horikoshii ligase catalyzes auto-adenylylation and nick sealing in the presence of a divalent cation and ATP; it is unable to utilize NAD+ or ADP to promote ligation in lieu of ATP. P. horikoshii ligase is thermophilic in vitro, with optimal adenylyltransferase activity at 90 degrees C and nick-joining activity at 70 to 90 degrees C. P. horikoshii ligase resembles the ligases of Methanobacterium thermautotrophicum and Sulfolobus shibatae in its strict specificity for ATP.  相似文献   

12.
R H Elder  J M Rossignol 《Biochemistry》1990,29(25):6009-6017
The differential ability of mammalian DNA ligases to use oligo(dT).poly(rA) as a substrate has been used to detect, and thereby extensively purify, two immunologically distinct forms of DNA ligase from rat liver. The activity of DNA ligase I, which is unable to use this template, is uniquely increased during liver regeneration, while that of DNA ligase II remains at a low level. Both enzymes require ATP and Mg2+ for activity and form an adenylylated intermediate which is stable and reactive. After SDS-PAGE, such radiolabeled complexes correspond to polypeptides of 130,000 and 80,000 Da for DNA ligase I and to 100,000 Da for DNA ligase II. That these labeled polypeptides do indeed correspond to active polypeptides of two different forms of DNA ligase is shown by the removal of the radiolabeled AMP, only when the intermediate is incubated with an appropriate substrate. In contrast to other eukaryotic DNA ligases, rat liver DNA ligase II has a lower Km for ATP (1.2 X 10(-5) M) than DNA ligase I (6 X 10(-5) M). Also, DNA ligase II can use ATP alpha S as a cofactor in the ligation reaction much more efficiently than DNA ligase I, further discriminating the ATP binding sites of these enzymes. Finally, antibodies raised against the 130,000-Da polypeptide of DNA ligase I specifically recognize this species in an immunoblot and inhibit only the activity of DNA ligase I.  相似文献   

13.
A differential effect is found of various bivalent cations (Ba2+, Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+, Zn2+ and Hg2+) on stability of intermolecular Py-Pu-Pu triplex with different sequence of base triads. Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ do stabilize the d(C)n d(G)n d(G)n triplex whereas Ba2+ and Hg2+ do not. Ba2+, Ca2+, Mg2+ and Hg2+ destabilize the d(TC)n d(GA)n d(AG)n triplex whereas Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ stabilize it. The complexes we observe are rather stable because they do not dissociate during time of gel electrophoresis in the co-migration experiments. Chemical probing experiments with dimethyl sulfate as a probe indicate that an arbitrary homopurine-homopyrimidine sequence forms triplex with corresponding purine oligonucleotide in the presence of Mn2+ or Zn2+, but not Mg2+. In the complex the purine oligonucleotide has antiparallel orientation with respect to the purine strand of the duplex. Specifically, we have shown the formation of the Py-Pu-Pu triplex in a fragment of human papilloma virus HPV-16 in the presence of Mn2+.  相似文献   

14.
Feng H  Parker JM  Lu J  Cao W 《Biochemistry》2004,43(39):12648-12659
DNA strand joining entails three consecutive steps: enzyme adenylation to form AMP-ligase, substrate adenylation to form AMP-DNA, and nick closure. In this study, we investigate the effects on ligation steps by deletion and site-directed mutagenesis of the BRCA1 C-terminal (BRCT) domain using NAD(+)-dependent DNA ligase from Thermus species AK16D. Deletion of the BRCT domain resulted in substantial loss of ligation activity, but the mutant was still able to form an AMP-ligase intermediate, suggesting that the defects caused by deletion of the entire BRCT domain occur primarily at steps after enzyme adenylation. The lack of AMP-DNA accumulation by the domain deletion mutant as compared to the wild-type ligase indicates that the BRCT domain plays a role in the substrate adenylation step. Gel mobility shift analysis suggests that the BRCT domain and helix-hairpin-helix subdomain play a role in DNA binding. Similar to the BRCT domain deletion mutant, the G617I mutant showed a low ligation activity and lack of accumulation of AMP-DNA intermediate. However, the G617I mutant was only weakly adenylated, suggesting that a point mutation in the BRCT domain could also affect the enzyme adenylation step. The significant reduction of ligation activity by G634I appears to be attributable to a defect at the substrate adenylation step. The greater ligation of mismatched substrates by G638I is accountable by accelerated conversion of the AMP-DNA intermediate to a ligation product at the final nick closure step. The mutational effects of the BRCT domain on ligation steps in relation to protein-DNA and potential protein-protein interactions are discussed.  相似文献   

15.
To mimic large numbers of nicked DNA duplexes we used a technique that produces nicked duplex DNA substrates by hybridization of complementary oligonucleotides, adjacent to an initiating primer, which are ligated together by a thermostable DNA ligase. Sequential ligation of nonanucleotides to this primary duplex results in the formation of polymers that can be analyzed by gel electrophoresis. The extent of polymerization is a measure of the efficiency of ligation. We determined the efficiency of ligation of nonanucleotides, using various length initiating primers, with three thermostable DNA ligases: Thermus thermophilus (Tth), Thermus scotoductus (Ts), and Rhodothermus marinus (Rm). Analysis of the effect of temperature for each ligase, and for each directing primer length, revealed that at 37 and 41 degrees C there was variation between ligase efficiency in the order Rm > or = Ts > or = Tth. The higher temperature of 46 degrees C was optimal for polymerization with each of the ligases and Rm ligase was the most efficient. Analysis of directionality of the ligations reactions suggests that for each of the Thermus ligases we tested, there was a bias to polymerization of nonanucleotides in a 5'-3' direction.  相似文献   

16.
DNA and RNA ligases: structural variations and shared mechanisms   总被引:1,自引:0,他引:1  
DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.  相似文献   

17.
Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between the Raman phosphodioxy band (centered near 1092 cm-1) and other Raman bands, suggesting that the former is not highly sensitive to the structural changes induced by divalent metal cations. The structural perturbations induced by divalent cations are much greater for > 23-kilobase pair DNA than for 160-base pair DNA, as evidenced by both the Raman difference spectra and the tendency toward the formation of insoluble aggregates. In the presence of transition metals, aggregation of high-molecular-weight DNA is evident at temperatures as low as 11 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

19.
Two new endonuclease activities, endonuclease B and endonuclease C, obtained from yeast nuclear preparations have been separated and partially characterized. Endonuclease B has a primary requirement for Mn2+ which cannot be replaced by Mg2+ or Ca2+, and makes single-strand scissions in double-stranded DNA. Endonculease C is activated by either Mn2+ or Mg2+, and makes single-strand scissions with Mg2+, while with Mn2+, scissions are made which result in double-strand breaks. Neither enzyme is active on denatured DNA, and both are inhibited by yeast RNA. Both enzymes exhibit pH optima at pH 5.0 and PH 7.2, and leave 5'-phosphoryl termini.  相似文献   

20.
Manganese stimulates calcium flux through the mitochondrial uniporter   总被引:3,自引:0,他引:3  
Mn2+ alters the balance between the simultaneous uptake and release of Ca2+ across the mitochondrial inner membrane toward a lower external level. Addition of as little as 0.5 microM Mn2+ to energised mitochondria from rat liver, rat heart or guinea-pig brain changed the level at which they buffered Ca2+ in the medium. That extramitochondrial Mn2+ was responsible was suggested by a partial decay in the shift in Ca2+ steady state at a rate similar to the rate at which Mn2+ was accumulated by the mitochondria. The alteration of transmembrane Ca2+ distribution by Mn2+ required that both Mg2+ and Pi be present, and was almost maximal at Mg2+ and Pi levels in the physiological range. Substitution of spermine or Ni2+ for Mg2+, or acetate for Pi, abolished the effect. In contrast to Sr2+, Mn2+ did not inhibit either EGTA- or Ruthenium red-induced release of Ca2+ from the mitochondria. However, when flux through the uniporter was rate-limiting, Mn2+ accelerated Ca2+ uptake. The stimulation showed hyperbolic kinetics, with an element of competition discernible in the Mn2+-Mg2+ interaction. Thus, extramitochondrial Mn2+ at levels occurring in vivo can alter the mitochondrial 'set-point' by stimulating Ca2+ influx through the uniporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号