首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Monoclonal antibodies specific for the influenza virus A/PR/8/34 hemagglutinin (HA) were used to examine the structure of the HA glycoprotein by immunofluorescence techniques during infection of MDCK cells. One antibody (Y8-10C2), shown previously to detect conformational alterations in the HA coinciding with the acid induction of viral fusion activity, bound to internalized virus but not to virus adsorbed to the cell surface. The binding of Y8-10C2 was completely inhibited by ammonium chloride treatment of the cells. These findings are consistent with the idea that Y8-10C2 detects conformational changes in the HA which accompany the acid-induced fusion of viral and endosomal membranes. The same antibody also bound to newly synthesized HA but not to later forms of cytoplasmic HA or to HA incorporated into the cell membrane during virus maturation. A possible common denominator of the antigenic changes detected by antibody Y8-10C2 during virus entry and replication may be alterations in the structural relationship among the three HA monomers which form the mature HA molecule.  相似文献   

2.
Membrane fusion is central to the entry of influenza virus into host cells. To quantitatively determine the fusion activity of hemagglutinin (HA) of avian influenza virus H5N1, we established a cell fusion assay based on a dual luciferase reporter gene. The HA fusion activity was assayed by measuring luciferase expression in fused cells, allowing a rapid, sensitive, and quantitative comparison of HA fusion activities at various pHs and in different cells types. The simplicity and the quantitative nature of this novel assay are ideally suited for identifying viral receptors or screening for inhibitors of viral entry in the future.  相似文献   

3.
Recently we showed that the membrane-proximal stem region of the vesicular stomatitis virus (VSV) G protein ectodomain (G stem [GS]), together with the transmembrane and cytoplasmic domains, was sufficient to mediate efficient VSV budding (C. S. Robison and M. A. Whitt, J. Virol. 74:2239-2246, 2000). Here, we show that GS can also potentiate the membrane fusion activity of heterologous viral fusion proteins when GS is coexpressed with those proteins. For some fusion proteins, there was as much as a 40-fold increase in syncytium formation when GS was coexpressed compared to that seen when the fusion protein was expressed alone. Fusion potentiation by GS was not protein specific, since it occurred with both pH-dependent as well as pH-independent fusion proteins. Using a recombinant vesicular stomatitis virus encoding GS that contained an N-terminal hemagglutinin (HA) tag (GS(HA) virus), we found that the GS(HA) virus bound to cells as well as the wild-type virus did at pH 7.0; however, the GS(HA) virus was noninfectious. Analysis of cells expressing GS(HA) in a three-color membrane fusion assay revealed that GS(HA) could induce lipid mixing but not cytoplasmic mixing, indicating that GS can induce hemifusion. Treatment of GS(HA) virus-bound cells with the membrane-destabilizing drug chlorpromazine rescued the hemifusion block and allowed entry and subsequent replication of GS(HA) virus, demonstrating that GS-mediated hemifusion was a functional intermediate in the membrane fusion pathway. Using a series of truncation mutants, we also determined that only 14 residues of GS, together with the VSV G transmembrane and cytoplasmic tail, were sufficient for fusion potentiation. To our knowledge, this is the first report which shows that a small domain of one viral glycoprotein can promote the fusion activity of other, unrelated viral glycoproteins.  相似文献   

4.
Zhu L  Li Y  Li S  Li H  Qiu Z  Lee C  Lu H  Lin X  Zhao R  Chen L  Wu JZ  Tang G  Yang W 《PloS one》2011,6(12):e29120
Hemagglutinin (HA) of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.  相似文献   

5.
Kinetics of pH-dependent fusion between influenza virus and liposomes   总被引:10,自引:0,他引:10  
The pH-dependent fusion between influenza virus and liposomes (large unilamellar vesicles) has been investigated as a model for the fusion step in the infectious entry of the virus into cells. Fusion was monitored continuously, with a fluorescence assay based on resonance energy transfer (RET) [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which allows an accurate quantitation of the fusion process. Evidence is presented indicating that the dilution of the RET probes from the liposomal bilayer into the viral membrane is not due to transfer of individual lipid molecules. The initial rate and final extent of the fusion reaction increase dramatically with decreasing pH, fusion being virtually complete within 1 min at pH 4.5-5.0. From experiments in which the ratio of virus to liposomes was varied, it is concluded that virus-liposome fusion products continue to fuse with liposomes, but not with virus. Fusion is most efficient with liposomes consisting of negatively charged phospholipids, while phosphatidylcholine and sphingomyelin are inhibitory. The reaction is completely blocked by an antiserum against the virus and inhibited by pretreatment of the virus with trypsin. The effect of proteolytic pretreatment at pH 7.4 is enhanced after preincubation of the virus at pH 5.0, consistent with the occurrence of a low pH induced, irreversible, conformational change in the viral fusion protein, the hemagglutinin (HA), exposing trypsin cleavage sites. When, after initiation of the fusion reaction at pH 5.0, the pH is readjusted to neutral, the process is arrested instantaneously, indicating that the low pH induced conformational change in the HA protein, in itself, is not sufficient to trigger fusion activity.  相似文献   

6.
Enveloped viruses contain surface proteins that mediate fusion between the viral and target cell membranes following an activating stimulus. Acidic pH induces the influenza virus fusion protein hemagglutinin (HA) via irreversible refolding of a trimeric conformational state leading to exposure of hydrophobic fusion peptides on each trimer subunit. Herein, we show that cells expressing fowl plague virus HA demonstrate discrete switching behavior with respect to the HA conformational change. Partially activated states do not exist at the scale of the cell, activation of HA leads to aggregation of cell surface trimers, and newly synthesized HA refold spontaneously in the presence of previously activated HA. These observations imply a feedback mechanism involving self-catalyzed refolding of HA and thus suggest a mechanism similar to the autocatalytic refolding and aggregation of prions.  相似文献   

7.

Background

The major role of the neuraminidase (NA) protein of influenza A virus is related to its sialidase activity, which disrupts the interaction between the envelope hemagglutin (HA) protein and the sialic acid receptors expressed at the surface of infected cells. This enzymatic activity is known to promote the release and spread of progeny viral particles following their production by infected cells, but a potential role of NA in earlier steps of the viral life cycle has never been clearly demonstrated. In this study we have examined the impact of NA expression on influenza HA-mediated viral membrane fusion and virion infectivity.

Methodology/Principal Findings

The role of NA in the early stages of influenza virus replication was examined using a cell-cell fusion assay that mimics HA-mediated membrane fusion, and a virion infectivity assay using HIV-based pseudoparticles expressing influenza HA and/or NA proteins. In the cell-cell fusion assay, which bypasses the endocytocytosis step that is characteristic of influenza virus entry, we found that in proper HA maturation conditions, NA clearly enhanced fusion in a dose-dependent manner. Similarly, expression of NA at the surface of pseudoparticles significantly enhanced virion infectivity. Further experiments using exogeneous soluble NA revealed that the most likely mechanism for enhancement of fusion and infectivity by NA was related to desialylation of virion-expressed HA.

Conclusion/Significance

The NA protein of influenza A virus is not only required for virion release and spread but also plays a critical role in virion infectivity and HA-mediated membrane fusion.  相似文献   

8.
Most orthopoxviruses encode a functional hemagglutinin (HA), which is nonessential for virus growth in cell culture. However, inactivation of the HA gene leads to the formation of polykaryocytes (syncytia) by fusion of infected cells at neutral pH. Fusion is not observed when a functional HA gene is present. Deletion of open reading frames (ORFs) K2, K3, and K4 within the HindIII K fragment of the HA-positive (HA+) vaccinia virus strain WR also led to fusion of cells upon infection at neutral pH. A novel ORF inactivation procedure utilizing the polymerase chain reaction was used to specifically implicate the K2 ORF in this phenomenon. The K2 ORF (the viral SPI-3 gene) encodes a protein resembling serine protease inhibitors (serpins). Inactivation of the SPI-3 gene in any of the HA+ orthopoxviruses tested caused infected cells to fuse in a manner which appeared identical to that seen for HA- mutants, although fusion was most pronounced with cowpox virus. SPI-3-negative strains fused despite the fact that the HA was expressed and processed normally, i.e., cells infected with SPI-3 mutants remained functionally hemadsorption positive, and analysis of the HA protein by Western immunoblot suggested that posttranslational modifications of the HA protein appeared normal. Fusion triggered by SPI-3 mutants, like that for HA- mutants, was inhibited by the monoclonal antibody C3 directed against the vaccinia virus 14-kDa envelope protein. Therefore SPI-3- and HA-mediated fusion share a requirement for the 14-kDa protein, suggesting linkage of the seemingly disparate SPI-3 and HA genes through a common pathway which normally acts to prevent fusion of cells infected with wild-type virus.  相似文献   

9.
Influenza virus hemagglutinin (HA) mediates viral entry into cells by a low pH-induced membrane fusion event in endosomes. A number of structural changes occur throughout the length of HA at the pH of fusion. To probe their significance and their necessity for fusion activity, we have prepared a site-directed mutant HA containing novel intersubunit disulfide bonds designed to cross-link covalently the membrane-distal domains of the trimer. These mutations inhibited the low pH-induced conformational changes and prevented HA-mediated membrane fusion; conditions that reduced the novel disulfide bonds restored membrane fusion activity. We conclude that structural rearrangements in the membrane distal region of the HA are required for membrane fusion activity.  相似文献   

10.
We have investigated the role of the cytoplasmic domains of the influenza virus hemagglutinin (HA) and the parainfluenza virus type 3 (PI3) fusion (F) glycoproteins as a determinant of their ability to undergo antibody-induced redistribution on plasma membranes. The viral envelope genes were truncated in their cytoplasmic domains by using oligonucleotide-directed mutagenesis and expressed by using recombinant vaccinia viruses. In HeLa cells, the truncated HA (HAt), like the full-length HA, did not cap in response to specific antibody. In CV-1 cells, HAt showed patchy surface immunofluorescence with few caps, whereas full-length HA exhibited capping in many cells in response to bivalent antibody. Quantitation of cap formation indicated a sevenfold decrease in the frequency of capping of HAt in comparison with full-length HA. Similarly, truncated F also exhibited a significant decrease in cap formation in comparison with full-length F. These results indicate that the ability of influenza virus HA and PI3 F to undergo redistribution in response to bivalent antibody has been altered by truncation of the viral glycoproteins and suggest that capping may involve interactions between the cytoplasmic domain of the viral glycoproteins and host cell components.  相似文献   

11.
New inhibitors of influenza viruses are needed to combat the potential emergence of novel human influenza viruses. We have identified a class of small molecules that inhibit replication of influenza virus at picomolar concentrations in plaque reduction assays. The compound also inhibits replication of vesicular stomatitis virus. Time of addition and dilution experiments with influenza virus indicated that an early time point of infection was blocked and that inhibitor 136 tightly bound to virions. Using fluorescently labeled influenza virus, inhibition of viral fusion to cellular membranes by blocked lipid mixing was established as the mechanism of action for this class of inhibitors. Stabilization of the neutral pH form of hemagglutinin (HA) was ruled out by trypsin digestion studies in vitro and with conformation specific HA antibodies within cells. Direct visualization of 136 treated influenza virions at pH 7.5 or acidified to pH 5.0 showed that virions remain intact and that glycoproteins become disorganized as expected when HA undergoes a conformational change. This suggests that exposure of the fusion peptide at low pH is not inhibited but lipid mixing is inhibited, a different mechanism than previously reported fusion inhibitors. We hypothesize that this new class of inhibitors intercalate into the virus envelope altering the structure of the viral envelope required for fusion to cellular membranes.  相似文献   

12.
Kelly K Lee 《The EMBO journal》2010,29(7):1299-1311
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three‐dimensional architecture of influenza virus–liposome complexes at pH 5.5 was investigated by electron cryo‐tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane‐centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of ‘leaky’ fusion to the observed prefusion structures is discussed.  相似文献   

13.
Low pH-induced fusion mediated by the hemagglutinin (HA) of influenza virus involves conformational changes in the protein that lead to the insertion of a "fusion peptide" domain of this protein into the target membrane and is thought to perturb the membrane, triggering fusion. By using whole virus, purified HA, or HA ectodomains, we found that shortly after insertion, pores of less than 26 A in diameter were formed in liposomal membranes. As measured by a novel assay, these pores stay open, or continue to close and open, for minutes to hours and persist after pH neutralization. With virus and purified HA, larger pores, allowing the leakage of dextrans, were seen at times well after insertion. For virus, dextran leakage was simultaneous with lipid mixing and the formation of "fusion pores," allowing the transfer of dextrans from the liposomal to the viral interior or vice versa. Pores did not form in the viral membrane in the absence of a target membrane. Based on these data, we propose a new model for fusion, in which HA initially forms a proteinaceous pore in the target, but not in the viral membrane, before a lipidic hemifusion intermediate is formed.  相似文献   

14.
Thaa B  Herrmann A  Veit M 《Journal of virology》2010,84(23):12445-12449
The hemagglutinin (HA) of influenza virus organizes the virus bud zone, a domain of the plasma membrane enriched in raft lipids. Using fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET), a technique that detects close colocalization of fluorescent proteins in transfected cells, we show that the viral proton channel M2 clusters with HA but not with a marker for inner leaflet rafts. The FRET signal between M2 and HA depends on the raft-targeting signals in HA and on an intact actin cytoskeleton. We conclude that M2 contains an intrinsic signal that targets the protein to the viral bud zone, which is organized by raft-associated HA and by cortical actin.  相似文献   

15.
The influenza virus enters target cells via the action of hemagglutinin proteins (HA) inserted into the viral envelope. HA promotes membrane fusion between the viral envelope and endosomal membrane at low pH, following viral binding to sialic acid-containing receptors on target cells, and internalization by endocytosis. The effect of target membrane sialic acid residues on the fusion activity of the influenza virus towards model membranes was evaluated by both reduction, (i.e. treating somatic cells with neuraminidase- (NA-) prior to virus-cell interactions), and by supplementing liposomes with the gangliosides GD1a and GT1b. The harshness of the neuraminidase pretreatment of target cells required to affect virus-induced membrane merging was found to greatly depend on the assay conditions, i.e. whether a virus-cell prebinding step at neutral pH was included prior to acidification. Minor concentrations of neuraminidase were found to greatly reduce virus fusion, but only in the absence of a prebinding step; they had no effect if this step was included. Although membrane merging was greatly reduced following cell neuraminidase pretreatment, virus-cell association at low pH was not disturbed proportionately. This probably reflects unspecific virus-cell binding under these conditions, probably of inactivated or aggregated virus particles, which does not translate into membrane merging. This seems to suggest both that target membrane sialic acid can protect the virus from losing its activity before triggering membrane merging, and that the importance of this interaction is not merely to ensure virus-target proximity. With liposomes, we found that both types of ganglioside supported efficient fusion, with GD1a promoting a slightly faster initial rate. However, in this case, virus-target proximity closely mirrored fusion activity, thus pointing to differential specificity between targets routinely used to assay influenza virus fusion activity.  相似文献   

16.
One of the best characterized fusion proteins, the influenza virus hemagglutinin (HA), mediates fusion between the viral envelope and the endosomal membrane during viral entry into the cell. In the initial conformation of HA, its fusogenic subunit, the transmembrane protein HA2, is locked in a metastable conformation by the receptor-binding HA1 subunit of HA. Acidification in the endosome triggers HA2 refolding toward the final lowest energy conformation. Is the fusion process driven by this final conformation or, as often suggested, by the energy released by protein restructuring? Here we explored structural properties as well as the fusogenic activity of the full sized trimeric HA2(1–185) (here called HA2*) that presents the final conformation of the HA2 ectodomain. We found HA2* to mediate fusion between lipid bilayers and between biological membranes in a low pH-dependent manner. Two mutations known to inhibit HA-mediated fusion strongly inhibited the fusogenic activity of HA2*. At surface densities similar to those of HA in the influenza virus particle, HA2* formed small fusion pores but did not expand them. Our results confirm that the HA1 subunit responsible for receptor binding as well as the transmembrane and cytosolic domains of HA2 is not required for fusion pore opening and substantiate the hypothesis that the final form of HA2 is more important for fusion than the conformational change that generates this form.  相似文献   

17.
The cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein is known to play an important role in regulating viral fusion activity. Upon removal of the C-terminal 16 amino acids, designated as the R peptide, the fusion activity of the Env protein is activated. To extend our understanding of the inhibitory effect of the R peptide and investigate the specificity of inhibition, we constructed chimeric influenza virus-MuLV hemagglutinin (HA) genes. The influenza virus HA protein is the best-studied membrane fusion model, and we investigated the fusion activities of the chimeric HA proteins. We compared constructs in which the coding sequence for the cytoplasmic tail of the influenza virus HA protein was replaced by that of the wild-type or mutant MuLV Env protein or in which the cytoplasmic tail sequence of the MuLV Env protein was added to the HA cytoplasmic domain. Enzyme-linked immunosorbent assays and Western blot analysis showed that all chimeric HA proteins were effectively expressed on the cell surface and cleaved by trypsin. In BHK21 cells, the wild-type HA protein had a significant ability after trypsin cleavage to induce syncytium formation at pH 5.1; however, neither the chimeric HA protein with the full-length cytoplasmic tail of MuLV Env nor the full-length HA protein followed by the R peptide showed any syncytium formation. When the R peptide was truncated or mutated, the fusion activity was partially recovered in the chimeric HA proteins. A low-pH conformational-change assay showed that similar conformational changes occurred for the wild-type and chimeric HA proteins. All chimeric HA proteins were capable of promoting hemifusion and small fusion pore formation, as shown by a dye redistribution assay. These results indicate that the R peptide of the MuLV Env protein has a sequence-dependent inhibitory effect on influenza virus HA protein-induced membrane fusion and that the inhibitory effect occurs at a late stage in fusion pore enlargement.  相似文献   

18.
The hemagglutinin (HA) spike glycoprotein of influenza virus catalyzes a low pH-induced membrane fusion event which releases the viral genome into the host cell cytoplasm. To study the fusion mechanism in more detail, we have prepared the ectodomain of HA in water-soluble form by treating virus particles with bromelain. Under mildly acidic conditions (pH less than or equal to 5.8), the ectodomain undergoes a conformational change which we found to be biochemically and immunologically equivalent to that in native viral HA. It became sensitive to proteinase K, it exposed new antigenic epitopes in its HA1 chain, and it acquired amphiphilic properties, notably the ability to bind to liposomes. The attachment to liposomes exhibited the same pH dependence and rapid kinetics as the conformational change and was mediated by HA2. The nature of the attachment resembled that of an integral membrane protein except that the bound HA was partially removed by base. As observed for virus fusion, attachment is independent of divalent cations and lipid composition. Temperature was found to be a critical parameter only with dimyristoylphosphatidycholine vesicles where attachment was partially blocked below the major phase transition. These and other results obtained indicated that the low pH-induced conformational change in the isolated ectodomain is equivalent to that occurring in intact viral HA, and that its attachment to liposomes can serve as a model for the initial stages in the HA-induced membrane fusion reaction.  相似文献   

19.
Fusion of influenza virus with the endosomal membrane of the host cell is mediated by the homotrimer-organized glycoprotein hemagglutinin (HA). Its fusion activity is triggered by a low pH-mediated conformational change affecting the structure of the HA1 and HA2 subunits. The HA2 subunits undergo a loop-to-helix transition leading to a coiled-coil structure, a highly conserved motif for many fusion mediating viral proteins. However, experimental studies showed that the HA2 coiled-coil structure is stable at neutral and low pH, implying that there is no direct relationship between low pH and the HA2 loop-to-helix transition. To interpret this observation, we used a computational approach based on the dielectric continuum solvent model to explore the influence of water and pH on the free energy change of the transition. The computations showed that the electrostatic interaction between HA2 fragments and water is the major driving force of the HA2 loop-to-helix transition leading to the coiled-coil structure, as long as the HA1 globular domain covering the HA2 subunits in the nonfusion competent conformation is reorganized and thereby allows water molecules to interact with the whole loop segments of the HA2 subunits. Moreover, we show that the energy released by the loop-to-helix transition may account for those energies required for driving the subsequent steps of membrane fusion. Such a water-driven process may resemble a general mechanism for the formation of the highly conserved coiled-coil motif of enveloped viruses.  相似文献   

20.
Fusion between influenza virus and target membranes is mediated by the viral glycoprotein hemagglutinin (HA). Replacement of the transmembrane domain of HA with a glycosylphosphatidylinositol (GPI) membrane anchor allows lipid mixing but not the establishment of cytoplasmic continuity. This observation led to the proposal that the fusion mechanism passes through an intermediate stage corresponding to hemifusion between outer monolayers. We have used confocal fluorescence microscopy to study the movement of probes for specific bilayer leaflets of erythrocytes fusing with HA-expressing cells. N-Rh-PE and NBD-PC were used for specific labeling of the outer and inner membrane leaflet, respectively. In the case of GPI-HA-induced fusion, different behaviors of lipid transfer were observed, which include 1) exclusive movement of N-Rh-PE (hemifusion), 2) preferential movement of N-Rh-PE relative to NBD-PC, and 3) equal movement of both lipid analogs. The relative population of these intermediate states was dependent on the time after application of a low pH trigger for fusion. At early time points, hemifusion was more common and full redistribution of both bilayers was rare, whereas later full redistribution of both probes was frequently observed. In contrast to wild-type HA, the latter was not accompanied by mixing of the cytoplasmic marker Lucifer Yellow. We conclude that 1) the GPI-HA-mediated hemifusion intermediate is meta-stable and 2) expansion of an aqueous fusion pore requires the transmembrane and/or cytoplasmic domain of HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号