首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiong Y  Santini CL  Kan B  Xu J  Filloux A  Wu LF 《Biochimie》2007,89(5):676-685
The Tat system has the remarkable capacity of exporting proteins in folded conformation across the cytoplasmic membrane. The functional Tat translocase from Gram-negative bacteria consists of TatA, TatB and TatC proteins. To gain information about the species specificity of the Tat translocase, we cloned tat genes from Gram-negative pathogens Shigella flexneri 2a str. 301, Vibrio cholerae El Tor N16961, Pseudomonas aeruginosa PAO1, thermophilic Sulfolobus solfataricus P2, Thermus thermophilus HB8 and from three Magnetospirillum species (AMB-1, MS-1 and MSR-1), and assessed the capacity of these Tat systems to restore the Tat-dependent growth defect of Escherichia coli tat mutants. We found that whereas the tat genes from the thermophilic bacterial and archaeal species were not functional in E. coli, other tat genes could all complement the phenotype of the E. coli tat mutants. In addition, a chimera composed of the N-terminus of V. cholerae TatE and C-terminus of M. magneticum TatA was functional. Whereas the expression of the tatABC genes from P. aeruginosa and Magnetospirillum strains must be induced to obtain a functional Tat system, overproduction of the V. cholerae TatABC proteins abolished the complementation. The complementation impairment seemed to be correlated with increasing level of slow-migrating TatC isoforms. In vitro studies showed that slow-migrating TatC isoforms in the purified V. cholerae TatABC complex increased with storage time. Together these results showed that the Tat translocases from the Gram-negative bacteria are generally functional in E. coli and the expression level is crucial for in vivo reconstitution of a functional Tat translocase.  相似文献   

2.
Bacterial Tat systems export folded proteins, including FeS proteins such as NrfC and NapG, which acquire their cofactors before translocation. NrfC and NapG are proofread by the Tat pathway, and misfolded examples are degraded after interaction with the translocon. Here, we identify TatD as a crucial component of this quality control system in Escherichia coli. NrfC/NapG variants lacking FeS centres are rapidly degraded in wild‐type cells but stable in a ΔtatD strain. The precursor of another substrate, FhuD, is also transiently detected in wild‐type cells but stable in the ΔtatD strain. Surprisingly, these substrates are stable in ΔtatD cells that overexpress TatD, and export of the non‐mutated precursors is inhibited. We propose that TatD is part of a quality control system that is intimately linked to the Tat export pathway, and that the overexpression of TatD leads to an imbalance between the two systems such that both Tat‐initiated turnover and export are prevented.  相似文献   

3.
The Tat system mediates the transport of folded proteins across the bacterial cytoplasmic membrane. To study the properties of the Escherichia coli Tat-system, we used green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). In the presence of arabinose, low levels of this protein rapidly saturate the translocase and cause the accumulation of inactive, membrane-bound TorA-GFP; fluorescence microscopy also showed active TorA-GFP to be distributed throughout the cytoplasm. However, the efficiency of export can be massively increased by alteration of the growth conditions, and further increased by overexpression of the tatABC genes. Under these conditions, the levels of GFP in the periplasm are raised over 20-fold and the export efficiency nears 100%. These results show that the Tat-system is relatively inactive under some growth conditions and the data suggest that the system may be applicable for the larger-scale export of heterologous proteins.  相似文献   

4.
Legionella pneumophila is a facultative intracellular human pathogen causing Legionnaires' disease, a severe form of pneumonia. Because of the importance of secretion pathways in virulence, we were interested in the possible presence of the twin-arginine translocation (Tat) pathway in L. pneumophila. This secretion pathway is used to transport folded proteins, characterized by two arginines in their signal peptide, across the cytoplasmic membrane. We describe here the presence of a putative Tat pathway in L. pneumophila. Three genes encoding Escherichia coli TatA, TatB, and TatC homologues were identified. The tatA and tatB genes were shown to constitute an operon while tatC is monocistronic. RT-PCR analysis revealed expression of the tat genes during both exponential and stationary growth as well as during intracellular growth in Acanthamoeba castellanii. A search for the conserved twin-arginine motif in predicted signal peptides resulted in a list of putative Tat substrates.  相似文献   

5.
TatA、TatB和TatC是大肠杆菌Tat转运酶的组成成分.研究表明各Tat蛋白具有不同的功能区域, TatA和TatB蛋白功能重要的位点位于N末端的穿膜片断、其后的双极性α-螺旋和铰链区.TatC的序列保守性低,N末端穿膜片断和位于胞质内的第一环区对转运是必需的.Tat转运酶各成分相互结合成复合物形式并相互依赖.TatA在细胞中高表达并自身聚合形成数量不等的同聚物,具有稳定TatBC复合物的作用,TatB有稳定TatC的功能,TatB和TatC两者结合形成二聚体.实验表明,TatA复合物形成转运通道,TatBC复合物通过TatC蛋白识别底物的信号肽并与底物结合, 再在TatB介导下与TatA复合物结合形成具有活性的转运酶.  相似文献   

6.
The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded proteins across the inner membrane. The integral membrane proteins TatA, TatB and TatC are essential components of this pathway. Substrate proteins are directed to the Tat apparatus by specialized N-terminal signal peptides bearing a consensus twin-arginine sequence motif. Here we have systematically examined the Tat complexes that can be purified from overproducing strains. Our data suggest that the TatA, TatB and TatC proteins are found in at least two major types of high molecular mass complex in detergent solution, one consisting predominantly of TatA but with a small quantity of TatB, and the other based on a TatBC unit but also containing some TatA protein. The latter complex is shown to be capable of binding a Tat signal peptide. Using an alternative purification strategy we show that it is possible to isolate a TatABC complex containing a high molar excess of the TatA component.  相似文献   

7.
Explaining the coexistence of competing species is a major challenge in community ecology. In bacterial systems, competition is often driven by the production of bacteriocins, which are narrow-spectrum proteinaceous toxins that serve to kill closely related species, providing the producer better access to limited resources. Bacteriocin producers have been shown to competitively exclude sensitive, nonproducing strains. However, the dynamics between bacteriocin producers, each lethal to its competitor, are largely unknown. In this study, we used in vitro, in vivo and in silico models to study competitive interactions between bacteriocin producers. Two Escherichia coli strains were generated, each carrying a DNA-degrading bacteriocin (colicins E2 and E7). Using reporter-gene assays, we showed that each DNase bacteriocin is not only lethal to its opponent but, at lower doses, can also induce the expression of its opponent''s toxin. In a well-mixed habitat, the E2 producer outcompeted its adversary; however, in structured environments (on plates or in mice colons), the two producers coexisted in a spatially ‘frozen'' pattern. Coexistence occurred when the producers were initiated with a clumped spatial distribution. This suggests that a ‘clump'' of each producer can block invasion of the other producer. Agent-based simulation of bacteriocin-mediated competition further showed that mutual exclusion in a structured environment is a relatively robust result. These models imply that colicin-mediated colicin induction enables producers to successfully compete and defend their niche against invaders. This suggests that localized interactions between producers of DNA-degrading toxins can lead to stable coexistence of heterogeneously distributed strains within the bacterial community and to the maintenance of diversity.  相似文献   

8.
The effect of vanadium treatment on insulin-stimulated glucose transporter type 4 (GLUT4) translocation was studied in cardiac tissue of streptozotocin (STZ)-induced diabetic rats by determining the subcellular distribution of GLUT4. Four groups of rats were examined: control and diabetic, with or without bis(maltolato)oxovanadium(IV) (BMOV, an organic form of vanadium) treatment for 8 weeks. The effect of vanadium on insulin-induced GLUT4 translocation was studied at 5 min as the early insulin response and at 15 min after insulin injection as the maximal insulin response.At 5 min after insulin injection, plasma membrane GLUT4 level in the diabetic-treated group was not different from the control groups and was significantly higher than that of the insulin-stimulated diabetic group, indicating an enhancement of insulin response on GLUT4 translocation brought about by vanadium treatment. In contrast to that at 5 min after insulin injection, no significant difference in the plasma membrane GLUT4 level was observed between the diabetic and the diabetic-treated groups at 15 min after insulin injection. GLUT4 mobilization from the intracellular pool in response to insulin was also investigated at 15 min after insulin injection. Basal intracellular GLUT4 content was significantly higher in the diabetic-treated group when compared to the diabetic group under the same condition. However, the increased basal intracellular GLUT4 in the diabetic-treated group did not result in more insulin-mediated GLUT4 translocation at 15 min after insulin injection. In conclusion, the finding that plasma membrane GLUT4 in the diabetic-treated group is significantly higher than that of the diabetic group at 5 min but not at 15 min post-insulin injection indicates that vanadium treatment enhances insulin-mediated GLUT4 translocation in cardiac tissue by enhancing its early response.  相似文献   

9.
Entomopathogenic nematodes (EPN) (Steinernematidae and Heterorhabditidae) have a mutualistic partnership with Gram-negative Gamma-Proteobacteria in the family Enterobacteriaceae. Xenorhabdus bacteria are associated with steinernematids nematodes while Photorhabdus are symbionts of heterorhabditids. Together nematodes and bacteria form a potent insecticidal complex that kills a wide range of insect species in an intimate and specific partnership. Herein, we demonstrate in vivo and in vitro techniques commonly used in the rearing of these nematodes under laboratory conditions. Furthermore, these techniques represent key steps for the successful establishment of EPN cultures and also form the basis for other bioassays that utilize these organisms for research. The production of aposymbiotic (symbiont–free) nematodes is often critical for an in-depth and multifaceted approach to the study of symbiosis. This protocol does not require the addition of antibiotics and can be accomplished in a short amount of time with standard laboratory equipment. Nematodes produced in this manner are relatively robust, although their survivorship in storage may vary depending on the species used. The techniques detailed in this presentation correspond to those described by various authors and refined by P. Stock’s Laboratory, University of Arizona (Tucson, AZ, USA). These techniques are distinct from the body of techniques that are used in the mass production of these organisms for pest management purposes.  相似文献   

10.
The Tat system functions to transport folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. Tat transport involves a high molecular weight TatBC-containing complex that transiently associates with TatA during protein translocation. Sedimentation equilibrium experiments were used to determine a protein-only molecular mass for the TatBC complex of 630+/-30kDa, suggesting that it contains approximately 13 copies of the TatB and TatC protomers. Point mutations that inactivate Tat transport have previously been identified in each of TatA, TatB, and TatC. Analysis of the TatBC complexes formed by these inactive variants demonstrates that the amino acid substitutions neither affect the composition of the TatBC complex nor cause accumulation of the assembled TatABC translocation site. In addition, the TatA protein is shown not to be required for the assembly or stability of the TatBC complex.  相似文献   

11.
Numerous high‐value recombinant proteins that are produced in bacteria are exported to the periplasm as this approach offers relatively easy downstream processing and purification. Most recombinant proteins are exported by the Sec pathway, which transports them across the plasma membrane in an unfolded state. The twin‐arginine translocation (Tat) system operates in parallel with the Sec pathway but transports substrate proteins in a folded state; it therefore has potential to export proteins that are difficult to produce using the Sec pathway. In this study, we have produced a heterologous protein (green fluorescent protein; GFP) in Escherichia coli and have used batch and fed‐batch fermentation systems to test the ability of the newly engineered Tat system to export this protein into the periplasm under industrial‐type production conditions. GFP cannot be exported by the Sec pathway in an active form. We first tested the ability of five different Tat signal peptides to export GFP, and showed that the TorA signal peptide directed most efficient export. Under batch fermentation conditions, it was found that TorA‐GFP was exported efficiently in wild type cells, but a twofold increase in periplasmic GFP was obtained when the TatABC components were co‐expressed. In both cases, periplasmic GFP peaked at about the 12 h point during fermentation but decreased thereafter, suggesting that proteolysis was occurring. Typical yields were 60 mg periplasmic GFP per liter culture. The cells over‐expressed the tat operon throughout the fermentation process and the Tat system was shown to be highly active over a 48 h induction period. Fed‐batch fermentation generated much greater yields: using glycerol feed rates of 0.4, 0.8, and 1.2 mL h?1, the cultures reached OD600 values of 180 and periplasmic GFP levels of 0.4, 0.85, and 1.1 g L?1 culture, respectively. Most or all of the periplasmic GFP was shown to be active. These export values are in line with those obtained in industrial production processes using Sec‐dependent export approaches. Biotechnol. Bioeng. 2012; 109: 2533–2542. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
14.
Proteins are exported across the bacterial cytoplasmic membrane either as unfolded precursors via the Sec machinery or in folded conformation via the Tat system. The ribose-binding protein (RBP) of Escherichia coli is a Sec-pathway substrate. Intriguingly, it exhibits fast folding kinetics and its export is independent of SecB, a general chaperone protein dedicated for protein secretion. In this study, we found that the quantity of RBP was significantly reduced in the periplasm of tat mutants, which was restored by in trans expression of the tatABC genes. Pulse-chase experiments showed that significant amount of wild-type RBP was processed in a secY mutant in the presence of azide (SecA inhibitor), whereas the processing of a slow folding RBP derivative was almost completely blocked under the same conditions. These results would suggest that under the Sec-defective conditions the export of a portion of folded RBP could be rescued by the Tat system.  相似文献   

15.
探讨了荧光蛋白作为报告蛋白用于蛋白质转运系统研究的可行性 ,结果表明海葵红色荧光蛋白聚集在细胞质内 ,不能转运至周质空间。而水母绿色荧光蛋白在Tat信号肽和Tat转运酶的共同作用下 ,以折叠形式转运至周质空间。通过荧光定量分析表明信号肽保守序列中的双精氨酸是保证绿色荧光蛋白转运及转运效率所必需的 ,且第二个精氨酸比第一个精氨酸更为重要。同时 ,揭示了Tat信号肽需要一定的高级结构才能行使功能 ;Tat信号肽不仅引导蛋白质的转运 ,而且也参与蛋白质的折叠。因此 ,绿色荧光蛋白是非常理想的报告蛋白 ,可用于研究Tat系统 ,但是海葵红色荧光蛋白易于聚集而不适合于此目的。  相似文献   

16.
Trimethylamine N-oxide reductase (TorA) is an anaerobically synthesized molybdoenzyme. It is translocated across the cytoplasmic membrane in a folded conformation via the Tat pathway of Escherichia coli. The requirement for phospholipids for the export of this enzyme was analyzed in the pgsA and pss mutants lacking anionic phospholipids and phosphatidylethanolamine, respectively. Anaerobic growth did not influence phospholipid composition of the pgsA and pss mutants. Interestingly, both pgsA and pss mutations severely retarded the translocation of TorA into the periplasm. Therefore, translocation of proteins through the Tat pathway is dependent on the anionic phospholipids and on lipid polymorphism.  相似文献   

17.
Numerous high‐value therapeutic proteins are produced in Escherichia coli and exported to the periplasm, as this approach simplifies downstream processing and enables disulfide bond formation. Most recombinant proteins are exported by the Sec pathway, which transports substrates across the plasma membrane in an unfolded state. The Tat system also exports proteins to the periplasm, but transports them in a folded state. This system has attracted interest because of its tendency to transport correctly folded proteins, but this trait renders it unable to export proteins containing disulfide bonds since these are normally acquired only in the periplasm; reduced substrates tend to be recognized as incorrectly folded and rejected. In this study we have used a series of novel strains (termed CyDisCo) which oxidise disulfide bonds in the cytoplasm, and we show that these cells efficiently export a range of disulfide‐containing proteins when a Tat signal peptide is attached. These test proteins include alkaline phosphatase (PhoA), a phytase containing four disulfide bonds (AppA), an antiinterleukin 1β scFv and human growth hormone. No export of PhoA or AppA is observed in wild‐type cells lacking the CyDisCo factors. The PhoA, AppA and scFv proteins were exported in an active form by Tat in the CyDisCo strain, and mass spectrometry showed that the vast majority of the scFv protein was disulfide‐bonded and correctly processed. The evidence indicates that this combination of Tat + CyDisCo offers a novel means of exporting active, correctly folded disulfide bonded proteins to the periplasm. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:281–290, 2014  相似文献   

18.
19.
Monoterpene biosynthesis pathway construction in Escherichia coli   总被引:3,自引:0,他引:3  
Four genes encoding sequential steps for the biosynthesis of the spearmint monoterpene ketone (-)-carvone from the C(5) isoprenoid presursors isopentenyl diphosphate and dimethylallyl diphosphate were installed in Escherichia coli. Inducible overexpression of these genes in the bacterial host allowed production of nearly 5 mg/l of the pathway intermediate (-)-limonene, which was mostly excreted to the medium such that products of the downstream steps, (-)-carveol and (-)-carvone, were not detected. Assay of pathway enzymes and intermediates indicated that flux through the initial steps catalyzed by geranyl diphosphate synthase and limonene synthase was severely limited by the availability of C(5) isoprenoid precursors in the host. Feeding studies with (-)-limonene, to overcome the flux deficiency, demonstrated the functional capability of limonene-6-hydroxylase and carveol dehydrogenase to produce the end-product carvone; however, uptake and trafficking restrictions greatly compromised the efficiency of these conversions.  相似文献   

20.
Pili (type IV fimbriae) of Neisseria meningitidis are glycosylated by the addition of O-linked sugars. Recent work has shown that PglF, a protein with homology to O-antigen 'flippases', is required for the biosynthesis of the pilin-linked glycan and suggests pilin glycosylation occurs in a manner analogous to the wzy-dependent addition of O-antigen to the core-LPS. O-Antigen ligases are crucial in this pathway for the transfer of undecraprenol-linked sugars to the LPS-core in Gram-negative bacteria. An O-antigen ligase homologue, pglL, was identified in N. meningitidis. PglL mutants showed no change in LPS phenotypes but did show loss of pilin glycosylation, confirming PglL is essential for pilin O-linked glycosylation in N. meningitidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号