首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microscope-based system is described for directly measuring protein rotational motion in viscous environments such as cell membranes by polarized fluorescence depletion (PFD). Proteins labeled with fluorophores having a high quantum yield for triplet formation, such as eosin isothiocyanate (EITC), are examined anaerobically in a fluorescence microscope. An acousto-optic modulator generates a several-microsecond pulse of linearly polarized light which produces an orientationally-asymmetric depletion of ground state fluorescence in the sample. When the sample is then probed with light polarized parallel to the excitation pulse, fluorescence recovers over 0-1,000 microseconds as the sum of two exponentials. One exponential corresponds to triplet decay and the other to the rotational relaxation. An exciting pulse perpendicular to the probe beam is then applied. Fluorescence recovery following this pulse is the difference of the same two exponentials. Equations for fluorescence recovery kinetics to be expected in various experimentally significant cases are derived. Least-squares analysis using these equations then permits the triplet lifetime and rotational correlation time to be determined directly from PFD data. Instrumentation for PFD measurements is discussed that permits photobleaching recovery measurements of lateral diffusion coefficients using the same microscope system. With this apparatus, both rotational and translational diffusion coefficients (Dr, Dt) were measured for EITC-labeled bovine serum albumin in glycerol solutions. Values obtained for Dr and Dt are discussed in light of both the PFD models and the experimental system.  相似文献   

2.
The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2(nd)- and 4(th)-rank order parameters, and , of the probe angular distribution (beta) relative to the fiber axis and , a coefficient describing the extent of rapid probe motions. We applied intense 12-micros polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale.  相似文献   

3.
Pump-and-probe techniques can be used to follow the slow rotational motions of fluorescent labels bound to macromolecules in solution. A strong pulse of polarized light initially anisotropically depletes the ground-state population. A continuous low-intensity beam of variable polarization then probes the anisotropic ground-state distribution. Using an additional emission polarizer, the generated fluorescence can be recorded as it rises towards its prepump value. A general theory of fluorescence recovery spectroscopy (FRS) is presented that allows for irreversible depletion processes like photobleaching as well as slowly reversible processes like triplet formation. In either case, rotational motions modulate recovery through cosine-squared laws for dipolar absorption and emission processes. Certain pump, probe, and emission polarization directions eliminate the directional dependence of either dipole and simplify the resulting expressions. Two anisotropy functions can then be constructed to independently monitor the rotations of either dipole. These functions are identical in form to the anisotropy used in fluorescence depolarization measurements and all rotational models developed there apply here with minor modifications. Several setups are discussed that achieve the necessary polarization alignments. These include right-angle detection equipment that is commonly available in laboratories using fluorescence methods.  相似文献   

4.
We report the first application of polarized fluorescence depletion (PFD), a technique which combines the sensitivity of fluorescence detection with the long lifetimes of triplet probes, to the measurement of membrane protein rotational diffusion on individually selected, intact mammalian cells. We have examined the rotation of type I Fc epsilon receptors (Fc epsilon RI) on rat mucosal mast cells of the RBL-2H3 line in their resting monomeric and differently oligomerized states using as probes IgE and three monoclonal antibodies (mAbs; H10, J17, and F4) specific for the Fc epsilon RI. PFD experiments using eosin (EITC)-IgE show that individual Fc epsilon RI on cells have a rotational correlation time (RCT) at 4 degrees C of 79 +/- 4 microseconds. Similarly, Fc epsilon RI-bound EITC-Fab fragments of the J17 Fc epsilon RI-specific mAb exhibit an RCT of 76 +/- 6 microseconds. These values agree with previous measurements of Fc epsilon RI-bound IgE rotation by time-resolved phosphorescence anisotropy methods. Receptor-bound EITC-conjugated divalent J17 antibody exhibits an increased RCT of 140 +/- 6 microseconds. This is consistent with the ability of this mAb to form substantial amounts of Fc epsilon RI dimers on these cell surfaces. The ratio of limiting to initial anisotropy in these experiments remains constant at about 0.5 from 5 degrees C through 25 degrees C for IgE, Fab, and intact mAb receptor ligands. Extensive cross-linking by second antibody of cell-bound IgE, of intact Fc epsilon RI-specific mAbs or of their Fab fragments, however, produced large fixed anisotropies demonstrating, under these conditions, receptor immobilization in large aggregates. PFD using the mAbs H10 and F4 as receptor probes yielded values for triplet lifetimes, RCT values, and anisotropy parameters essentially indistinguishable from those obtained with the mAb J17 clone. Possible explanations for these observations are discussed.  相似文献   

5.
The decay kinetics of the FAD-fluorescence in lipoamide dehydrogenase from pig heart have been reinvestigated using phase fluorometric methods and sophisticated laser pulse techniques. Both pulse and modulation methods lead to distinct heterogeneity in lifetimes. The two different techniques lead to good correspondence in the longer lifetime component of a biexponential decay model, whereas the more rapidly decaying component is distinctly shorter and has a larger amplitude using the phase technique with two available modulation frequencies (15 and 60 MHz). Lifetime measurements as a function of temperature and in the presence of D2O instead of H2O illustrate that the quenching of the FAD fluorescence in lipoamide. dehydrogenase is mainly dynamic in nature and that solvent comes into contact with the fluorophor. Mobility of the flavin itself, free and bound to the enzyme, has been measured by both differential polarized phase fluorometry and experimental fluorescence anisotropy decay after ps laser pulse excitation. By employing flavin models it has been shown that both techniques have ps time resolution. Measurements with the latter more direct method indicate a rapid subnanosecond motion of the FAD bound within the enzyme, only visible at temperatures lower than about 15°C, where the protein rotational diffusion is slowed down. The significance of rapid transient conformational fluctuations for catalysis is discussed with reference to recently developed insights reported in the literature.  相似文献   

6.
The fluorescence decay time of spinach chloroplasts at 77 degrees K was determined at 735 nm (corresponding to the photosystem I emission) using a train of 10-ps laser pulses spaced 10 ns apart. The fluorescence lifetime is constant at congruent to 1.5 ns for up to the fourth pulse, but then decreases with increasing pulse number within the pulse train. This quenching is attributed to triplet excited states, and it is concluded that triplet excitons exhibit a time lag of about 50 ns in diffusing from light harvesting antenna pigments to photosystem I pigments. The diffusion coefficient of triplet excitons is a least 300--400 times slower than the diffusion coefficient of singlet excitons in chloroplast membranes.  相似文献   

7.
《BBA》1985,807(1):35-43
EPR study of reduced ground and photoexcited triplet state of Photosystem I reaction center in the thermophylic cyanobacterium Mastigocladus laminosus at 8 K is reported. In the reduced ground state preparation, the iron-sulfur EPR spectra are found to be similar to that of Photosystem I reaction center of higher plants. Two types of transient photoexcited triplets are observed and are correlated to the reduction state of the iron-sulfur centers. When electrons can be transferred freely through the acceptors chain, a polarized triplet spectrum is observed, typical of spin-orbit intersystem crossing mechanism with lifetime of approx. 2 ms and is attributed to chlorophyll a, either at the antenna or at A1 in the electron-transport chain. When the iron-sulfur centers are reduced the triplet spectrum is typical of a radical-pair intersystem crossing mechanism with triplet lifetime shorter than 1 ms, and is attributed to P-700. Both species have similar spectroscopic zero field splitting parameters identifying both as chlorophyll a.  相似文献   

8.
Current far-field fluorescence nanoscopes provide subdiffraction resolution by exploiting a mechanism of fluorescence inhibition. This mechanism is implemented such that features closer than the diffraction limit emit separately when simultaneously exposed to excitation light. A basic mechanism for such transient fluorescence inhibition is the depletion of the fluorophore ground state by transferring it (via a triplet) in a dark state, a mechanism which is workable in most standard dyes. Here we show that microscopy based on ground state depletion followed by individual molecule return (GSDIM) can effectively provide multicolor diffraction-unlimited resolution imaging of immunolabeled fixed and SNAP-tag labeled living cells. Implemented with standard labeling techniques, GSDIM is demonstrated to separate up to four different conventional fluorophores using just two detection channels and a single laser line. The method can be expanded to even more colors by choosing optimized dichroic mirrors and selecting marker molecules with negligible inhomogeneous emission broadening.  相似文献   

9.
Although fluorescence photobleaching recovery (FPR) experiments are usually interpreted in terms of the translational motions of a fluorescently labeled species, rotational motions can also modulate recovery through the cosine-squared laws for dipolar absorption and emission processes. In a complex interacting system, translational and rotational contributions may both be simultaneously present. We show how these contributions can be separated in solution studies using an FPR setup in which (a) the linear polarization of the low-intensity observation beam and the high-intensity photobleaching pulse can be varied independently, and (b) all emitted fluorescent photons are counted equally. The fluorescence recovery signal obtained with the observation beam polarized at the magic angle, 54.7 degrees, from the bleach polarization direction is independent of label orientation, whereas the anisotropy function formed from a combination of parallel and perpendicular polarizations isolates the orientational recovery. The anisotropy function is identical to that in fluorescence correlation spectroscopy and, for rigid-body rotational diffusion, can be expressed as a sum of five exponential terms.  相似文献   

10.
A polarized photobleaching study of DNA reorientation in agarose gels   总被引:3,自引:0,他引:3  
Polarized fluorescence recovery after photobleaching (pFRAP) has been used to study the internal dynamics of relatively long DNA molecules embedded in gels that range in concentration from 1% to 5% agarose. The data indicate that, even in very congested gels, rapid internal relaxation of DNA is largely unhindered; however, interactions with gel matrices apparently do perturb the larger amplitude, more slowly (microseconds to milliseconds) relaxing internal motions of large DNAs. The relationship between this work and recent studies which indicate that internal motions of DNA play an important role in the separation achieved with pulsed-field gel electrophoresis techniques is discussed. The polarized photobleaching technique is also analyzed in some detail. In particular, it is shown that "reversible" photobleaching phenomena are probably related to depletion of the ground state by intersystem crossing to the triplet state.  相似文献   

11.
A reference method for the deconvolution of polarized fluorescence decay data is described. Fluorescence lifetime determinations for p-terphenyl, p-bis[2-(5-phenyloxazolyl)]benzene and N-acetyltryptophanamide (AcTrpNH2) show that with this method more reliable fits of the decays can be made than with the scatterer method, which is most frequently used. Analysis of the AcTrpNH2 decay with p-terphenyl as the reference compound yields an excellent fit with lifetimes of 2.985 ns for AcTrpNH2 and 1.099 ns for p-terphenyl (20 degrees C), whereas the AcTrpNH2 decay cannot be satisfactorily fitted when the scatterer method is used. The frequency of the detected photons is varied to determine the conditions where pulse pile-up starts to affect the measured decays. At detection frequencies of 5 kHz and 15 kHz, which corresponds to 1.7% and 5% respectively of the rate of the excitation photons no effects are found. Decays measured at 30 kHz (10%) are distorted, indicating that pile-up effects play a role at this frequency. The fluorescence and fluorescence anisotropy decays of the tryptophan residues in the proteins human serum albumin, horse liver alcohol dehydrogenase and lysozyme have been reanalysed with the reference method. The single tryptophan residue of the albumin is shown to be characterized by a triple-exponential fluorescence decay. The anisotropy decay of albumin was found to be mono-exponential with a rotational correlation time of 26 ns (20 degrees C). The alcohol dehydrogenase has two different tryptophan residues to which single lifetimes are assigned. It is found that the rotational correlation time for the dehydrogenase changes with excitation wavelength (33 ns for lambda ex = 295 nm and 36 ns for lambda ex = 300 nm at 20 degrees C), indicating a nonspherical protein molecule. Lysozyme has six tryptophan residues, which give rise to a triple-exponential fluorescence decay. A single-exponential decay with a rotational correlation time of 3.8 ns is found for the anisotropy. This correlation time is significantly shorter than that arising from the overall rotation and probably originates from intramolecular, segmental motion.  相似文献   

12.
This study investigates the dynamic behavior of 1,6-diphenyl-1,3,5-hexatriene (DPH) in C(18):C(10)phosphatidylcholine [C(18):C(10)PC] bilayers. C(18):C(10)PC is an asymmetric mixed-chain phosphatidylcholine known to form mixed-interdigitated structures below the transition temperature and form partially interdigitated bilayers above the transition temperature. The rotation of DPH in C(18):C(10)PC has been described in terms of the thermal coefficient of rotation using the modified Y-plot method which takes into account the limiting anisotropy value. During the phase transition of C(18):C(10)PC, DPH exhibits a thermal coefficient b2M = 0.41 - 0.51 degrees C-1 which is similar to the b2M values obtained with noninterdigitated phosphatidylcholine bilayers. Differential polarized phase-modulation fluorometry has also been employed to study the dynamic behavior of DPH in C(18):C(10)PC in real time. The data show that DPH contains considerable motion in the highly ordered mixed interdigitated bilayers. The DPH motion steadily increases with an increase in temperature as shown by the rotational correlation time, and the wobbling diffusion constant. However, the limiting anisotropy, the order parameter, and the width of the lifetime distribution undergo an abrupt decrease, and a corresponding abrupt increase in the cone angle, at approximately 16 degrees C. This temperature range is near the onset temperature of the phase transition as determined by differential scanning calorimetry. The rotational parameters show strong hysteresis on heating and cooling. All the rotational parameters derived from DPH fluorescence in mixed interdigitated C(18):C(10)PC exhibit magnitudes similar to those obtained from noninterdigitated gel phases of symmetric diacylphosphatidylcholines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The time-resolved fluorescence intensity and anisotropy decays of the immunophilin domain of FKBP59 (FKBP59-I)--a protein containing two tryptophan residues (the W89, buried in a hydrophobic pocket and the W59, water exposed)--were studied using the time-correlated single photon counting (TCSPC) technique. The synchrotron radiation machine Super-ACO (Orsay, France) was used as a pulsed light source (approximately 8MHz). A mainly dual and discrete excited state lifetime distribution was previously evidenced (Rouvière et al., 1997). The lifetime heterogeneity has been suggested to be relevant to the topological tryptophan heterogeneity. Indeed, taking into account the spectroscopic properties of the single tryptophan residue of the immunophilin FKBP12, a highly homologous protein containing a single tryptophan residue, the short- and the long-lived lifetime species were assumed to be related to the solvent-buried and to the solvent-exposed fluorescent residues, respectively. We definitely demonstrate this point by describing the dynamical properties of each tryptophan residue of the FKBP59-I as a function of the emission wavelength. The data of the polarized components of the fluorescence emission were analyzed by the Maximum Entropy Method using a one-dimensional model (each excited-state lifetime tau being associated with each rotational correlation time theta) and a two-dimensional model (without any a priori association constraint between the tau's and the theta's). The two dimensional analysis of the polarized fluorescence intensity decays by MEM show the existence of a correlation between fast picosecond dynamics of the indole ring with the shortest-lived and blue emitting species. Conversely, the long-lived and red emitting population is mainly associated to the Brownian motion of the protein. A protein flexibility of the region located around the W59 residue, but slightly contributing to the light depolarization process, is also evidenced and can be specifically attributed to the red emitting population.  相似文献   

14.
Factors responsible for fluorescence quenching of the lipophylic fluorescent probe 4-dimethylaminochalcone in nonpolar and polar media were studied. The femtosecond dynamics of 4-dimethylaminochalcone excited state was measured using the absorption method of "excitation probing". In nonpolar hexane where the fluorescence quantum yield is very low (0.001), all excited 4-dimethylaminochalcone molecules go to the triplet state with a rate constant of 2.10(11) s(-1). At the same time, the radiation rate constant is 1000 times lower; therefore, such a fast transition to triplet is the major cause of the very small fluorescence yield. In polar acetone, the fluorescence yield is 220 times higher than in hexane. In acetone, no transitions to triplet state were detected. At the same time, a radiationless conversion to the ground state took place with a rate constant of 10(9) s(-1), which decreased the fluorescence yield to 0.22. The activation energy of the quenching processes is polarity dependent and decreases from 6 in nonpolar to 3 kcal/mol in polar media. The yield of 4-dimethylaminochalcone fluorescence varies hundreds times in media of different polarity but is a linear function of the Lippert's polarity parameter f(epsilon,n) where epsilon is the dielectric constant at low frequencies. It is supposed that polar media stabilize the "flat" conformation of the 4-dimethylaminochalcone molecule prior to its excitation, and this conformation is optimal for fluorescence. In this case, stabilization is determined only by medium polarity.  相似文献   

15.
We have Simulated the convolution of the emission anisotropy decay function with both a delta-pulse excitation function (exact solution) and a pulse function of either Gaussian or other functional form. It can be readily shown that convolution with a pulse of finite width leads to lower r0 values (anisotropy at time zero). Especially in the case of short-lived fluorescence, it can be demonstrated that the convoluted anisotropy lags behind the exact anisotropy leading to longer apparent rotational correlation times. Contour plots of r corrections as a function of both fluorescence lifetime and rotational correlation time were constructed for two different pulse profiles. Inspection of these contour diagrams can lead to an estimate of the relative error involved, when anisotropy data are not deconvoluted.  相似文献   

16.
The investigation in this report aimed at providing photophysical evidence that the long-lived triplet excited state plays an important role in the non-single-exponential photobleaching kinetics of fluorescein in microscopy. Experiments demonstrated that a thiol-containing reducing agent, mercaptoethylamine (MEA or cysteamine), was the most effective, among other commonly known radical quenchers or singlet oxygen scavengers, in suppressing photobleaching of fluorescein while not reducing the fluorescence quantum yield. The protective effect against photobleaching of fluorescein in the bound state was also found in microscopy. The antibleaching effect of MEA let to a series of experiments using time-delayed fluorescence spectroscopy and nanosecond laser flash photolysis. The combined results showed that MEA directly quenched the triplet excited state and the semioxidized radical form of fluorescein without affecting the singlet excited state. The triplet lifetime of fluorescein was reduced upon adding MEA. It demonstrated that photobleaching of fluorescein in microscopy is related to the accumulation of the long-lived triplet excited state of fluorescein and that by quenching the triplet excited state and the semioxidized form of fluorescein to restore the dye molecules to the singlet ground state, photobleaching can be reduced.  相似文献   

17.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

18.
Phosphorescence anisotropy from internal tryptophan (Trp) residues in proteins which are in the crystalline state may provide an experimental approach suitable to study the flexibility of rather rigid segments of protein structure. The phosphorescence anisotropy of Trp-314 in liver alcohol dehydrogenase, which is enclosed within the beta-sheet forming the coenzyme-binding domain, was measured with the protein free in solution and in the crystalline state. In contrast to the free protein, where the rotational correlation time reflects the tumbling rate of the whole macromolecule, there is effectively no loss in anisotropy in the crystalline state. At room temperature, the triplet lifetime of 0.5 s implies that the rotational correlation time of the indole side chain must be larger than 1 s. Anisotropy data show that fluctuations of the indole ring about the average position can only be of limited amplitude (cone of semiangle less than 15 degrees) and that the resistance opposed by the beta-sheet to out-of-plane rotational motions is equivalent to a viscosity larger than 2.5 X 10(8) P, a value which confirms the particular rigidity anticipated for such an assembly of secondary structure.  相似文献   

19.
The bangiophycean filamentous red alga Bangia atropurpurea is distributed in freshwater habitats such as littoral and splash zones of lakes or rapid currents distant from the sea. In these habitats, the distribution and growth of this alga appear to be related to hard water rich in calcium ions. To characterize the eco-physiological properties of this calciphilic red alga, we examined the effects of long-term and short-term Ca(2+) depletion on photosynthetic growth of the thallus and on the phycobilisome. Long-term culture experiments suggested that higher Ca(2+) concentrations (>50mgL(-1)) were required to sustain thallus growth and pigmentation of cells. In short-term Ca(2+)-depletion treatments, fluorescence derived from phycoerythrin (PE) fluctuated, although the absorption spectra of the thalli did not change. After 30 min of Ca(2+) depletion, the fluorescence lifetime of PE became markedly longer, indicating that the energy transfer from PE to phycocyanin (PC) was suppressed. The fluorescence lifetime of PE returned to its original value within a short time after 4h of Ca(2+) depletion, however, energy transfer from PE to PC was still suppressed. This suggested that the excitation energy absorbed by PE was quenched during prolonged Ca(2+) depletion. The efficient energy transfer from PC and allophycocyanin were unchanged during these treatments.  相似文献   

20.
The dominant motional mode for membrane proteins is uniaxial rotational diffusion about the membrane normal axis, and investigations of their rotational dynamics can yield insight into both the oligomeric state of the protein and its interactions with other proteins such as the cytoskeleton. However, results from the spectroscopic methods used to study these dynamics are dependent on the orientation of the probe relative to the axis of motion. We have employed polarized fluorescence confocal microscopy to measure the orientation of eosin-5-maleimide covalently reacted with Lys-430 of human erythrocyte band 3. Steady-state polarized fluorescence images showed distinct intensity patterns, which were fit to an orientation distribution of the eosin absorption and emission dipoles relative to the membrane normal axis. This orientation was found to be unchanged by trypsin treatment, which cleaves band 3 between the integral membrane domain and the cytoskeleton-attached domain. this result suggests that phosphorescence anisotropy changes observed after trypsin treatment are due to a rotational constraint change rather than a reorientation of eosin. By coupling time-resolved prompt fluorescence anisotropy with confocal microscopy, we calculated the expected amplitudes of the e-Dt and e-4Dt terms from the uniaxial rotational diffusion model and found that the e-4Dt term should dominate the anisotropy decay. Delayed fluorescence and phosphorescence anisotropy decays of control and trypsin-treated band 3 in ghosts, analyzed as multiple uniaxially rotating populations using the amplitudes predicted by confocal microscopy, were consistent with three motional species with uniaxial correlation times ranging from 7 microseconds to 1.4 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号