首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.  相似文献   

2.
Ovulated eggs possess maternal apoptotic execution machinery that is inhibited for a limited time. The fertilized eggs switch off this time bomb whereas aged unfertilized eggs and parthenogenetically activated eggs fail to stop the timer and die. To investigate the nature of the molecular clock that triggers the egg decision of committing suicide, we introduce here Xenopus eggs as an in vivo system for studying the death of unfertilized eggs. We report that after ovulation, a number of eggs remains in the female body where they die by apoptosis. Similarly, ovulated unfertilized eggs recovered in the external medium die within 72 h. We showed that the death process depends on both cytochrome c release and caspase activation. The apoptotic machinery is turned on during meiotic maturation, before fertilization. The death pathway is independent of ERK but relies on activating Bad phosphorylation through the control of both kinases Cdk1 and JNK. In conclusion, the default fate of an unfertilized Xenopus egg is to die by a mitochondrial dependent apoptosis activated during meiotic maturation.  相似文献   

3.
In insects, egg activation is known to occur in vivo and independently of fertilization, but its mechanisms are poorly understood. To gain understanding of these mechanisms, an attempt was made to activate the egg of Gryllus bimaculatus in vitro. It was found that meiosis resumed and was completed in unfertilized eggs treated with hypotonic buffer. Early developmental processes in activated, unfertilized eggs were investigated and compared with those in fertilized eggs. Mitosis did not progress, resulting in formation of anucleate cytoplasmic islands (pseudoenergids). Development in the activated, unfertilized eggs stopped at this stage and both yolk subdivision and cellularization did not occur. To elucidate the role of the nucleus in the developmental process to the syncytial stage in fertilized eggs, eggs were treated with aphidicolin to inhibit DNA polymerization. It was found that pseudoenergids also formed in these aphidicolin-treated fertilized eggs. These results demonstrate that pseudoenergids can increase in number independently of nuclei, suggesting that the cytoplasm rather than the nucleus plays the primary role in development to the syncytial stage in G. bimaculatus.  相似文献   

4.
We have evaluated the regulation of a 43-kDa MAP kinase in sea urchin eggs. Both MAP kinase and MEK (MAP kinase kinase) are phosphorylated and active in unfertilized eggs while both are dephosphorylated and inactivated after fertilization, although with distinct kinetics. Reactivation of MEK or the 43-kDa MAP kinase prior to or during the first cell division was not detected. Confocal immunolocalization microscopy revealed that phosphorylated (active) MAP kinase is present primarily in the nucleus of the unfertilized egg, with some of the phosphorylated form in the cytoplasm as well. Incubation of unfertilized eggs in the MEK inhibitor U0126 (0.5 microM) resulted in the inactivation of MEK and MAP kinase within 30 min. Incubation in low concentrations of U0126 (sufficient to inactivate MEK and MAP kinase) after fertilization had no effect on progression through the embryonic cell cycle. Microinjection of active mammalian MAP kinase phosphatase (MKP-3) resulted in inactivation of MAP kinase in unfertilized eggs, as did addition of MKP-3 to lysates of unfertilized eggs. Incubation of unfertilized eggs in the Ca(2+) ionophore A23187 led to inactivation of MEK and MAP kinase with the same kinetics as observed with sperm-induced egg activation. This suggests that calcium may be deactivating MEK and/or activating a MAP kinase-directed phosphatase. A cell-free system was used to evaluate the activation of phosphatase separately from MEK inactivation. Unfertilized egg lysates were treated with U0126 to inactivate MEK and then Ca(2+) was added. This resulted in increased MAP kinase phosphatase activity. Therefore, MAP kinase inactivation at fertilization in sea urchin eggs likely is the result of a combination of MEK inactivation and phosphatase activation that are directly or indirectly responsive to Ca(2+).  相似文献   

5.
Unfertilized eggs of the echiuroid, Urechis unicinctus , were activated by polyamines, such as putrescine, spermidine and spermine at concentrations above 10 μM. Fertilization membrane elevated and germinal vesicle disappeared in unfertilized eggs kept for several min in sea water containing these polyamines. Following the addition of these polyamines, a decrease of pH value in the egg suspension, occurred in a similar manner as observed following fertilization. Several sec after the addition of polyamines to the egg suspension, the respiratoy rate increased very slightly and the sensitivity of the respiration to 2, 4-dinitrophenol, which was lower in unfertilized eggs than in fertilized eggs, became as high as in fertilized ones. Irregular cleavage occurred in the eggs stimulated by polyamines. The incorporation of [3H]-deoxyadenosine into DNA was initiated by adding polyamines in the unfertilized eggs preloaded with the isotope. The rate of [3H]-leucine incorporation into protein in the preloaded unfertilized eggs was also enhanced by polyamines, in almost the same manner as observed following fertilization.  相似文献   

6.
Binding of insulin to sea urchin egg plasma membrane has been studied by biochemical and immunocytochemical methods. Unfertilized and fertilized eggs as well as embryos during the first cell division have been used. 1. Competition experiments between 125I-insulin (1 nM) and an excess of native insulin (30 muM) indicate a specific hormone fixation to membrane crude extracts from unfertilized and fertilized eggs. The magnitude of "specific binding" is comparable to values recorded for mammalian cells. 2. Inhibition of insulin fixation by concanavalin A (100 mug/ml) suggests the glycoprotein composition of plasma membrane receptors. 3. An 30-min incubation of unfertilized and fertilized eggs in the presence of insulin leads to a significant increase in cyclic AMP content. 4. An immunocytochemical method demonstrates that insulin is selectively and specifically bound to the plasma membrane of eggs incubated in the presence of insulin before fixation. It can be concluded that insulin receptor sites are components of sea urchin eggs plasma membrane. Insulin binding which leads to cyclic AMP accumulation is not deeply modified by fertilization and does not include visible morphological changes in the eggs.  相似文献   

7.
The regulation of the microtubule-mediated motions within eggs during fertilization was investigated in relation to the shift in intracellular pH (pHi) that occurs during the ionic sequence of egg activation in the sea urchins Lytechinus variegatus and Arbacia punctulata. Microtubule assembly during formation of the sperm aster and mitotic apparatus was detected by anti-tubulin immunofluorescence microscopy, and the microtubule-mediated migrations of the sperm and egg nuclei were studied with time-lapse video differential interference contrast microscopy. Manipulations of intracellular pH were verified by fluorimetric analyses of cytoplasmic fluorescein incorporated as fluorescein diacetate. The ionic sequence of egg activation was manipulated i) to block the pHi shift at fertilization or reduce the pHi of fertilized eggs to unfertilized values, ii) to elevate artificially the pHi of unfertilized eggs to fertilized values, and iii) to elevate artificially or permit the normal pHi shift in fertilized eggs in which the pHi shift at fertilization was previously prevented. Fertilized eggs in which the pHi shift was suppressed did not assemble microtubules or undergo the normal microtubule-mediated motions. In fertilized eggs in which the pHi was reduced to unfertilized levels after the assembly of the sperm aster, no motions were detected. If the intracellular pH was later permitted to rise, normal motile events leading to division and development occurred, delayed by the time during which the pH elevation was blocked. Microtubule-mediated events occurred in eggs in which the intracellular pH was elevated, even in unfertilized eggs in which the pH was artificially increased. These results indicate that the formation and normal functioning of the egg microtubules is initiated, either directly or indirectly, by the shift in intracellular pH that occurs during fertilization.  相似文献   

8.
The thymidine kinase activity of homogenates of unfertilized eggs of the sea urchin, Hemicentrotus pulcherrimus, in 1 M NaCl was always lower than that of homogenates of the unfertilized eggs in hypotonic media or homogenates of the fertilized or ammonia-activated eggs in 1 M NaCl by 30–50%. Sonication of the unfertilized egg homogenates in 1 M NaCl resulted in the elevation of thymidine kinase activity up to a level in the fertilized or ammonia-activated egg homogenates which is not affected by sonication. Differential centrifugation of unfertilized egg homogenates in 1 M NaCl revealed that the latent thymidine kinase is associated with the 1500g pellet or even with the 200g pellet. Exposure of the 1500g pellet to sonication, hypotonic media, 0.3% Triton X-100 in 1 M NaCl, and 2 M propyleneglycol resulted in the elevation of thymidine kinase, which was eventually shown to be no longer bound to the pellet fraction. Latent thymidine kinase was not detected in the 1500g pellet prepared from the fertilized egg homogenate in 1 M NaCl. These findings seem to suggest that thymidine kinase in unfertilized eggs may be sequestered, at least partly, in some large intracellular structures but may be released from them upon fertilization or ammonia activation, in accordance with our earlier observation on the apparent activation of thymidine kinase afer fertilization.  相似文献   

9.
Centrosomes are undetectable in unfertilized sea urchin eggs, and normally the sperm introduces the cell's microtubule-organizing center (MTOC) at fertilization. However, artificial activation or parthenogenesis triggers microtubule assembly in the unfertilized egg, and this study explores the reappearance and behavior of the maternal centrosome. During activation with A23187 or ammonia, microtubules appear first at the cortex; centrosomal antigen is detected diffusely throughout the entire cytoplasm. Later, the centrosome becomes more distinct and organizes a radial microtubule shell, and eventually a compact centrosome at the egg center organizes a monaster. In these activated eggs, centrosomes undergo cycles of compaction and decompaction in synchrony with the chromatin, which also undergoes cycles of condensation and decondensation. Parthenogenetic activation with heavy water (50% D2O) or the microtubule-stabilizing drug taxol (10 microM) induces numerous centrosomal foci in the unfertilized sea urchin egg. Within 15 min after incubation in D2O, numerous fine centrosomal foci are detected, and they organize a connected network of numerous asters which fill the entire egg. Taxol induces over 100 centrosomal foci by 15 min after treatment, which organize a corresponding number of asters. The centrosomal material in either D2O- or taxol-treated eggs aggregates with time to form fewer but denser foci, resulting in fewer and larger asters. Fertilization of eggs pretreated with either D2O or taxol shows that the paternal centrosome is dominant over the maternal centrosome. The centrosomal material gradually becomes associated with the enlarged sperm aster. These experiments demonstrate that maternal centrosomal material is present in the unfertilized egg, likely as dispersed undetectable material, which can be activated without paternal contributions. At fertilization, paternal centrosomes become dominant over the maternal centrosomal material.  相似文献   

10.
Unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, have a much lower capacity for glutamine synthesis than do fertilized eggs. This difference is not caused by an alteration of glutamine synthetase activity attendant upon fertilization. Neither the specific activity of glutamine synthetase nor its pattern of activation by divalent metal ions is affected by fertilization. The enzyme from both fertilized and unfertilized eggs is activated by α-ketoglutarate and inhibited by ultimate end products of glutamine metabolism. This type of regulation is similar to that seen with many other eucaryotic glutamine synthetases.Unfertilized eggs take up less glutamic acid than do fertilized eggs when the amino acid is presented at high concentrations (12.5 mM), whereas there is no difference in glutamic acid uptake at low concentrations (5 μM). Under conditions where glutamate uptake is identical, unfertilized eggs are dependent upon exogenous ammonia for glutamine synthesis in vivo; fertilized eggs are able to synthesize glutamine in the absence of added ammonia. Thus, our data suggest that the increased capacity for glutamine synthesis after fertilization is related to an increased availability of the substrate, ammonia.  相似文献   

11.
The binding of concanavalin A (ConA) to zona-free unfertilized and fertilized mouse eggs has been investigated using tritiated ConA. At low lectin concentrations (1–5 μg ml?1) the fertilized egg shows a higher affinity for [3H]ConA than does the unfertilized egg. In saturation conditions, however, unfertilized and fertilized eggs show the same binding capacity (1.55 × 108 ConA molecules/egg). The results indicate that ConA-binding sites change qualitatively following fertilization; possible connections between this change and other fertilization-induced changes in the egg surface are discussed.  相似文献   

12.
Kinetics of in vivo phosphorylation of 3H-thymidine taken up by sea urchin eggs was compared between unfertilized and fertilized eggs. The percentage of phosphorylated 3H-thymidine in the total acid-soluble radioactivity in the cell increased with increasing incubation time within the first several minutes of incubation in the unfertilized eggs, while nearly 100% of phosphorylation of thymidine was observed without regards to the incubation time and in spite of a tremendous increase in the net uptake of thymidine in the fertilized eggs, suggesting possible activation of thymidine kinase occurring soon after fertilization.In contrast to the in vivo finding, the thymidine kinase activity in unfertilized egg homogenates was found in general to be almost as large as that in fertilized egg homogenates. However, when the enzyme activity was assayed within a short period (30 min) after homogenization of unfertilized eggs, the activity was found to increase more or less with time after homogenization, reaching a level equal to that in fertilized egg homogenates. This enzyme activation after homogenization was especially marked in case of Pseudocentrotus eggs and sometimes amounted to a several fold increase.Preliminary investigations revealed possible involvement of some redox reaction(s) in the thymidine kinase activation during and/or after homogenization of unfertilized sea urchin eggs.  相似文献   

13.
Measurements of 45Ca flux into and out of Urechis eggs indicate that, during the first 10 min after insemination, the eggs take up 0.24 pmole of Ca/egg. Total egg Ca measured by atomic absorption (AA) spectroscopy increased by 0.23 pmole of Ca/egg (0.56, 0.79, and 0.76 pmole of Ca/egg for unfertilized, 10-min fertilized, and 60-min fertilized eggs, respectively). Thus, the total change in egg Ca is accounted for by the influx even though the rate of efflux, measured as a release of 45Ca from preloaded eggs, increases to twice the unfertilized rate by 15 min. The fertilization influx follows saturation kinetics (Ka = 1.3 mM). It is competitively inhibited by procaine, but is not inhibited by dinitrophenol, mersalyl acid, or ruthenium red. Ten percent of the total Ca influx has occurred by 10 sec, and it is, therefore, the most rapid response to fertilization yet known in these eggs. The influx is also observed in eggs partially activated by insemination in pH 7 seawater (SW); the other fertilization responses, except sperm penetration, do not occur in pH 7 SW. Although Ca influx alone is insufficient to activate the eggs, it may be a prerequisite for cytoplasmic activation and development, inducing other secondary responses which are prevented by low external pH.  相似文献   

14.
The egg of Hippoglossoides platessoides limandoides swells when released into sea water. The swelling takes place entirely outside the ovoplasm and creates a large perivitelline space which can make up 85% of the total egg volume. Swelling occurs in both unfertilized and fertilized eggs although a small proportion of unfertilized eggs, believed not to have been activated, do not swell. Swelling is dependent upon the breakdown of cortical alveoli, together with an unusually soft and elastic chorion. The cortical alveoli, present in greater numbers than is usual in teleost eggs, release colloidal material when they break down on egg activation; adsorption of water by this material is responsible for the egg volume increase.  相似文献   

15.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

16.
Unfertilized eggs of the sea urchin Arbacia punctulata contain pigment granules distributed throughout their cytoplasm. During the first 15 minutes after fertilization, these vesicles move out to the cortex where they become firmly anchored. We have used time-lapse video differential interference microscopy to analyze the motility of these organelles in unfertilized and fertilized Arbacia eggs. Pigment granules exhibit saltatory movement in both unfertilized and fertilized eggs. Quantitation of vesicle saltations before and after fertilization demonstrates that while there is no significant difference in the speed or path-length of vesicle movement, there is a dramatic change in the orientation of these saltations. Saltations in the unfertilized egg are very non-radial and are as likely to be directed toward the cortex as away. In contrast, saltations in the fertilized egg are more radially oriented and more likely to be cortically directed. This transition must reflect underlying changes in the cellular structures necessary for pigment granule saltations. The change in the orientation of pigment granule saltations following fertilization requires both a transient increase in the cytoplasmic concentration of Ca2+ and an elevation of cytoplasmic pH. Similarly, the ability of pigment granules to adhere to the cortex requires both the transient elevation of cytoplasmic Ca2+ and the alkalinization of the cytoplasm. As the reorganization of cortical actin at fertilization is regulated by these ionic fluxes, and both movement and adhesion are sensitive to cytochalasins, we hypothesize that the alterations in directed motility and adhesion reflect underlying changes in the actin cytoskeleton.  相似文献   

17.
Mating order can have important consequences for the fertilization success of males whose ejaculates compete to fertilize a clutch of eggs. Despite an excellent body of literature on mating-order effects in many animals, they have rarely been considered in marine free-spawning invertebrates, where both sexes release gametes into the water column. In this study, we show that in such organisms, mating order can have profound repercussions for male reproductive success. Using in vitro fertilization for two species of sea urchin, we found that the 'fertilization history' of a clutch of eggs strongly influenced the size distribution of unfertilized eggs, and consequently the likelihood that they will be fertilized. Males that had first access to a batch of eggs enjoyed elevated fertilization success because they had privileged access to the largest and therefore most readily fertilizable eggs within a clutch. By contrast, when a male's sperm were exposed to a batch of unfertilized eggs left over from a previous mating event, fertilization rates were reduced, owing to smaller eggs remaining in egg clutches previously exposed to sperm. Because of this size-dependent fertilization, the fertilization history of eggs also strongly influenced the size distribution of offspring, with first-spawning males producing larger, and therefore fitter, offspring. These findings suggest that when there is variation in egg size, mating order will influence not only the quantity but also the quality of offspring sired by competing males.  相似文献   

18.
We utilized an egg staining technique to measure the in situ fertilization success of two marine copepod species, Temora longicornis and Eurytemora herdmani from May to October 2008 in coastal Maine and correlated fertilization success with environmental conditions in their habitat. T. longicornis is a free spawning species that releases eggs into the ambient seawater after mating. In contrast, E. herdmani carries eggs in an egg sac until they hatch. The proportion of fertilized eggs within E. herdmani egg sacs was significantly higher than the freely spawned clutches of T. longicornis. This may be a result of the asymmetrical costs associated with carrying vs. spawning unfertilized eggs. T. longicornis frequently laid both fertilized and unfertilized eggs within their clutch. T. longicornis fertilization was negatively associated with chlorophyll concentration and positively associated with population density in their local habitat. The fertilization status of E. herdmani egg sacs was high throughout the season, but the proportion of ovigerous females was negatively associated with an interaction between predators and the proportion of females in the population. This study emphasizes that, in addition to population level processes, community and ecosystem level processes strongly influence the fertilization success and subsequent productivity of copepods.  相似文献   

19.
The egg deposition behavior of the turnip sawfly, Athalia rosae (Hymenoptera: Symphyta), is described. Both unmated and mated females lay eggs individually inside of fresh young leaves of cruciferous plants. During an oviposition event, females exhibit a distinct pause in abdominal contractions just before the actual egg deposition act. Unmated females show a longer pause (11.31 s on average) than mated females (4.38 s on overall average). By employing an eye color mutation, the sex of the eggs laid by females was ascertained. Females mated once lay mostly fertilized (diploid female) eggs initially but begin to lay a considerable number of unfertilized (haploid male) eggs later in life. The laying of an unfertilized egg is associated with a longer pause (6.98 s on average) than the laying of a fertilized egg (3.76 s on average). These results are in contrast to previous reports on apocritan Hymenoptera, where the presence of a pause or a longer pause during oviposition was associated with the deposition of fertilized eggs rather than unfertilized eggs. The possibility that mated Athalia rosae females control fertilization and its implications for sex allocation strategies are discussed.  相似文献   

20.
Protein synthesis has been investigated in cell-free preparations from mature ovarian oocytes, unfertilized and fertilized eggs, and early embryos of Drosophila melanogaster. Preparations from unfertilized eggs have a specific activity that is 5- to 6-fold higher than the activity of fractions from ovarian oocytes. There is an additional small increase in activity of preparations from fertilized eggs. The specific activity that is rapidly attained in the fertilized egg remains essentially constant for 2 to 2.5 h after fertilization, decreases sharply during blastoderm formation, and again increases during gastrulation. The activities of unfertilized eggs decline slightly during the first 2 h after oviposition, and then decrease more sharply. About 35 % of the ribosomes in preparations from both unfertilized and fertilized eggs sediment in the polyribosome region of sucrose density gradients, whereas no polyribosomes could be detected in preparations from ovarian oocytes. In both ovarian oocytes and fertilized eggs, less than 1 % of the ribosome populations were present as subunits. Additional ribonucleoprotein material of buoyant densities different from those of ribosomal subunits or ribosomes was found throughout the sucrose gradients. About 3.5 % of the ribosomes were found to be membrane-bound in preparations from both unfertilized and fertilized eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号