首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three members of the human zinc finger Krüppel family, ZNF11/KOX2, ZNF22/KOX15, and ZNF25/KOX19, have been regionally localized to the pericentromeric region of chromosome 10 by in situ chromosomal hybridization and somatic cell hybrid analysis. ZNF25/KOX19 is located centromeric to a breakpoint in chromosome band 10q11.2 in the chromosome region 10p11.2-q11.2, whereas ZNF22/KOX15 maps distal to it in band 10q11.2. Sequences hybridizing to the KOX2 probe are found at two loci, ZNF11A and ZNF11B, that map proximal and distal to the 10q11.2 breakpoint, respectively. The two ZNF11 loci probably represent two related sequences in 10p11.2-q11.2. This cluster of ZNF/KOX genes is of particular interest since the loci for multiple endocrine neoplasia type 2A and 2B (MEN2A and MEN2B) syndromes have been assigned to this region by linkage analysis.  相似文献   

2.
The chromosome locations of 368 human Kruppel-type zinc finger (ZNF) PAC clones were physically mapped by FISH to human chromosomes in support of recent efforts of assigning KOX cDNAs (KOX1-KOX32) to zinc finger gene clusters. Recent mapping results were validated and confirmed by sequence comparisons to zinc finger gene sequences automatically annotated in EnsEMBL. In toto, 799 Kruppel-type zinc finger genes have been annotated in EnsEMBL of which 290 genes are found to encode KRAB domains. Sequence homologies of the zinc finger domains were used to establish phylogenic trees of KOX zinc finger genes as well as of all KRAB containing human zinc finger and KOX genes documenting the evolution of KRAB zinc finger genes late in primate evolution. A list of 368 assigned ZNF PAC clones is available under http://www.pzr.uni-rostock.de/supplements.  相似文献   

3.
Two members of the KOX gene family, ZNF23 (KOX16) and ZNF32 (KOX30), have been mapped by in situ hybridization to chromosome regions 16q22 and 10q23-q24, respectively. The map location of ZNF23 and ZNF32 placed these zinc finger protein genes near to chromosome loci that, under certain in vitro conditions, are expressed as fragile sites (FRA16B, FRA16C) and (FRA10D, FRA10A, FRA10B and FRA10E). Human zinc finger gene ZNF32 maps to a chromosome region on 10q23-24 in which deletions have been observed associated with malignant lymphoma on 10q22-23 and with carcinoma of the prostate on 10q24. ZNF23 is located on 16q22 in a chromosomal region that has been involved in chromosome alterations characteristic of acute myeloid leukemia. A second Kox zinc finger gene (ZNF19/KOX12) was recently mapped to the same chromosome region on human chromosome 16q22. In the analogous murine position, the murine zinc finger genes Zfp-1 and Zfp-4 are found in the syntenic 16q region of mouse chromosome 8. Thus, ZNF19 and ZNF23 might be members of an evolutionarily conserved zinc finger gene cluster located on human chromosome 16q22.  相似文献   

4.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

5.
Summary Two members of the human zinc finger Krüppel family, ZNF 12 (KOX 3) and ZNF 26 (KOX 20), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization. The presence of individual human zinc finger genes in mouse-human hybrid DNAs was correlated with the presence of specific human chromosomes or regions of chromosomes in the corresponding cell hybrids. Analysis of such mouse-human hybrid DNAs allowed the assignment of the ZNF 12 (KOX 3) gene to chromosome region 7p. The ZNF 26 (KOX 20) gene segregated with chromosome region 12q13-qter. The zinc finger genes ZNF 12 (KOX 3) and ZNF 26 (KOX 20) were localized by in situ chromosomal hybridization to human chromosome regions 7p22-21 and 12q24.33, respectively. These genes and the previously mapped ZNF 24 (KOX 17) and ZNF 29 (KOX 26) genes, are found near fragile sites.  相似文献   

6.
Zinc finger genes in mammalian genomes are frequently found to occur in clusters with cluster members appearing in a tandem array on the chromosome. It has been suggested that in situ gene duplication events are primarily responsible for the evolution of such clusters. The problem of inferring the series of duplication events responsible for producing clustered families is different from the standard phylogeny problem. In this paper, we study this inference problem using a graph called duplication model that captures the series of duplication events while taking into account the observed order of the genes on the chromosome. We provide algorithms to reconstruct a duplication model for a given data set. We use our method to hypothesize the series of duplication events that may have produced the ZNF45 family that appears on human chromosome 19.  相似文献   

7.
Two members of the zinc finger Krüppel family, ZNF24 (KOX17) and ZNF29 (KOX26), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization to human chromosomes 18q12 and 17p13-p12, respectively. The mapping of ZNF29 together with the previously reported localization of ZFP3 suggests that a zinc finger gene complex is located on human chromosome 17p. ZNF29 maps centromeric to the human p53 tumor antigen gene (TP53). In the analogous murine position, the two mouse zinc finger genes Zfp2 and Zfp3 have recently been assigned to the distal region of mouse chromosome 11, the murine homolog of human chromosome 17. Both human zinc finger genes ZNF24 and ZNF29 are in chromosomal regions that have been noted to be deleted in neoplasms of the lung and of the central nervous system at chromosome 17p and in colorectal neoplasia at chromosomes 17p and 18q.  相似文献   

8.
Hox cluster organization represents a valuable marker to study the effects of recent genome duplication in salmonid fish (25-100 Mya). Using polymerase chain reaction amplification of cDNAs, BAC library screening, and genome walking, we reconstructed 13 Hox clusters in the Atlantic salmon containing 118 Hox genes including 8 pseudogenes. Hox paralogs resulting from the genome duplication preceding the radiation of ray-finned fish have been much better preserved in salmon than in other model teleosts. The last genome duplication in the salmon lineage has been followed by the loss of 1 of the 4 HoxA clusters. Four rounds of genome duplication after the vertebrate ancestor salmon Hox clusters display the main organizational features of vertebrate Hox clusters, with Hox genes exclusively that are densely packed in the same orientation. Recently, duplicated Hox clusters have engaged a process of divergence, with several cases of pseudogenization or asymmetrical evolution of Hox gene duplicates, and a marked erosion of identity in noncoding sequences. Strikingly, the level of divergence attained strongly depends on the Hox cluster pairs rather than on the Hox genes within each cluster. It is particularly high between both HoxBb clusters and both HoxDa clusters, whereas both HoxBa clusters remained virtually identical. Positive selection on the Hox protein-coding sequences could not be detected.  相似文献   

9.
The CD33-related sialic acid binding Ig-like lectins (CD33rSiglecs) are predominantly inhibitory receptors expressed on leukocytes. They are distinguishable from conserved Siglecs, such as Sialoadhesin and MAG, by their rapid evolution. A comparison of the CD33rSiglec gene cluster in different mammalian species showed that it can be divided into subclusters, A and B. The two subclusters, inverted in relation to each other, each encode a set of CD33rSiglec genes arranged head-to-tail. Two regions of strong correspondence provided evidence for a large-scale inverse duplication, encompassing the framework CEACAM-18 (CE18) and ATPBD3 (ATB3) genes that seeded the mammalian CD33rSiglec cluster. Phylogenetic analysis was consistent with the predicted inversion. Rodents appear to have undergone wholesale loss of CD33rSiglec genes after the inverse duplication. In contrast, CD33rSiglecs expanded in primates and many are now pseudogenes with features consistent with activating receptors. In contrast to mammals, the fish CD33rSiglecs clusters show no evidence of an inverse duplication. They display greater variation in cluster size and structure than mammals. The close arrangement of other Siglecs and CD33rSiglecs in fish is consistent with a common ancestral region for Siglecs. Expansion of mammalian CD33rSiglecs appears to have followed a large inverse duplication of a smaller primordial cluster over 180 million years ago, prior to eutherian/marsupial divergence. Inverse duplications in general could potentially have a stabilizing effect in maintaining the size and structure of large gene clusters, facilitating the rapid evolution of immune gene families. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
We have mapped the DNase I-hypersensitive sites (HSs) in Yeast Artificial Chromosomes (YACs) containing segments of human chromosomal DNA. One of the five HSs found in a YAC carrying the β-globin gene cluster has been localised in the region, termed HS2, that is DNase I hypersensitive in most human cells. We have also identified a class of HSs in YACs containing DNA from the q11.2 band of human chromosome 21, which are located close to, or within, segments of the chromosome that are sensitive to restriction enzymes recognizing CGCG tetranucleotides. Received: 18 June 1997 / Accepted: 10 August 1997  相似文献   

11.
A cluster of Krüppel type zinc finger genes of the KRAB subclass has recently been localized on human chromosome 19p12-p13.1. We now report that ZNF117 (HPF9), a closely related zinc finger gene of this KRAB subfamily, has been assigned to a distinct locus in the human genome: chromosome band 7q11.2.  相似文献   

12.
We analyzed two novel clusters of keratin-associated protein (KAP) genes on human chromosome 11 (11p15.5 and 11q13.5) in which we identified two known human KRTAP5 genes, KerA (=KRN1) and KerB, and nine novel KRTAP5 family genes. RT-PCR analysis of these KAP genes showed preferential expression in human hair root, suggesting these gene products are required for hair formation. Based on the deduced amino acid sequences, all these KAP proteins were classified into an ultrahigh-sulfur (UHS) type KAP with high cysteine content (> 30 mol%). These KAPs also showed high glycine and serine contents (average 24.30 and 21.13 mol%, respectively), distinguishing from other UHS/HS KAP families located on human chromosomes 17 and 21. Dot-matrix analysis revealed a significant similarity between these two KAP gene clusters. We postulated a mechanism by which these two KAP gene clusters are generated via genomic duplication of a primordial gene cluster followed by genetic modification during evolution.  相似文献   

13.
Human WNT3A and WNT14 cDNAs were cloned and characterized. WNT3A and WNT14 encoded WNT family protein of 352 and 365 amino acids, respectively. The 3.0-kb WNT3A mRNA was moderately expressed in placenta, and the 4.4-kb WNT14 mRNA was moderately expressed in skeletal muscle and heart. Although WNT3A mRNA was not detected in 35 human cancer cell lines, WNT14 mRNA was expressed in gastric cancer cell lines TMK1, MKN7, MKN45 and KATO-III. WNT3A and WNT14 genes, clustered in the head to head manner with an interval of about 58.0 kb, were mapped to human chromosome 1q42 region by fluorescence in situ hybridization. WNT3 and WNT15, clustered in human chromosome 17q21 region, are related genes of WNT3A and WNT14, respectively. WNT3A-WNT14 gene cluster and WNT3-WNT15 gene cluster might be generated due to duplication of ancestral gene cluster, just like WNT10A-WNT6 gene cluster and WNT10B-WNT1 gene cluster. Integration sites of mouse mammary tumor virus (MMTV) are located in the mouse chromosomal regions corresponding to these human WNT gene clusters. These results strongly suggest that unidentified nucleotide motif responsible for susceptibility to recombination might exist within the intergenic regions of these WNT gene clusters.  相似文献   

14.
Nagawa F  Yoshihara S  Tsuboi A  Serizawa S  Itoh K  Sakano H 《Gene》2002,292(1-2):73-80
Genomic analysis was performed for the murine odorant receptor (OR) genes. The MOR28 cluster on chromosome 14 was extensively studied. It contains six OR genes, MOR28, 10, 83, 29A, 29B and 30. The human homolog of this cluster is located on the human chromosome 14, and contains five OR genes, HOR28/10, 83, 29A, 29B and 30. Sequence comparison of these OR gene paralogs and orthologs suggests that the coding homologies are accounted for not only by recent gene duplication, but also by gene conversion among the coding sequences within the cluster. A possible role of gene conversion in the olfactory system is discussed in the context of the olfactory map.  相似文献   

15.
The olfactory receptor (OR) subgenome harbors the largest known gene family in mammals, disposed in clusters on numerous chromosomes. One of the best characterized OR clusters, located at human chromosome 17p13.3, has previously been studied by us in human and in other primates, revealing a conserved set of 17 OR genes. Here, we report the identification of a syntenic OR cluster in the mouse and the partial DNA sequence of many of its OR genes. A probe for the mouse M5 gene, orthologous to one of the OR genes in the human cluster (OR17-25), was used to isolate six PAC clones, all mapping by in situ hybridization to mouse chromosome 11B3-11B5, a region of shared synteny with human chromosome 17p13.3. Thirteen mouse OR sequences amplified and sequenced from these PACs allowed us to construct a putative physical map of the OR gene cluster at the mouse Olfr1 locus. Several points of evidence, including a strong similarity in subfamily composition and at least four cases of gene orthology, suggest that the mouse Olfr1 and the human 17p13.3 clusters are orthologous. A detailed comparison of the OR sequences within the two clusters helps trace their independent evolutionary history in the two species. Two types of evolutionary scenarios are discerned: cases of "true orthologous genes" in which high sequence similarity suggests a shared conserved function, as opposed to instances in which orthologous genes may have undergone independent diversification in the realm of "free reign" repertoire expansion.  相似文献   

16.
Genome-level evolution of resistance genes in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Baumgarten A  Cannon S  Spangler R  May G 《Genetics》2003,165(1):309-319
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.  相似文献   

17.
The voltage-gated sodium channel (SCN) alpha subunits are large proteins with central roles in the generation of action potentials. They consist of approximately 2,000 amino acids encoded by 24-27 exons. Previous evolutionary studies have been unable to reconcile the proposed gene duplication schemes with the species distribution and molecular phylogeny of the genes. We have carefully annotated the complete SCN gene sequences, correcting numerous database errors, for a broad range of vertebrate species and analyzed their phylogenetic relationships. We have also compared the chromosomal positions of the SCN genes relative to adjacent gene families. Our studies show that the ancestor of the vertebrates probably had a single sodium channel gene with two characteristic AT-AC introns, the second of which is unique to vertebrate SCN genes. This ancestral gene, located close to a HOX gene cluster, was quadrupled along with HOX in the two rounds of basal vertebrate tetraploidizations to generate the ancestors of the four channels SCN1A, SCN4A, SCN5A, and SCN8A. The third tetraploidization in the teleost fish ancestor doubled this set of genes and all eight are still present in at least three of four investigated teleost fish genomes. In tetrapods, the gene family expanded by local duplications before the radiation of amniotes, generating the cluster SCN5A, SCN10A, and SCN11A on one chromosome and the cluster SCN1A, SCN2A, SCN3A, and SCN9A on a different chromosome. In eutherian mammals, a tenth gene, SCN7A, arose in a local duplication in the SCN1A gene cluster. The SCN7A gene has undergone rapid evolution and has lost the ability to cause action potentials-instead, it functions as a sodium sensor. The three genes in the SCN5A cluster were translocated from the HOX-bearing chromosome in a mammalian ancestor along with several adjacent genes. This evolutionary scenario is supported by the adjacent TGF-β receptor superfamily (comprised of five distinct families) and the cysteine-serine-rich nuclear protein gene family as well as the HOX clusters. The independent expansions of the SCN repertoires in tetrapods and teleosts suggest that the functional diversification may differ between the two lineages.  相似文献   

18.
The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.  相似文献   

19.
20.
A Salmonella live vaccine causing both O4- and O9-specific immune responses would be of use, but no reported Salmonella serotype has both of these O antigens. Constructed Salmonella typhimurium strains with an rfb (O-antigen-specifying) gene cluster of type D in the chromosome and one of type B in an F'-rfb+ factor, and those with the reverse combination reacted strongly with both anti-O4 (and anti-O5) and anti-O9 sera and, if they carried recA, could be maintained in this state by growth conditions selective for retention of the F' factor. One of the two B.rfb+ gene clusters of a (P22-lysogenic) S. typhimurium strain with a tandem duplication of a chromosomal segment including hisD and B.rfb+ was replaced (by transduction) by a D.rfb+ gene cluster; the resulting strain was O1+ O4+ O5+ O9+ and stable as such after being made recA. A stable O4+ O9+ derivative of a virulent S. enteritidis (O-group D) strain was made by transducing into it first the join point of an appropriate tandem duplication strain, together with the adjacent B.rfb+ gene cluster, and then srl::Tn10 recA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号