首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Milacemide (2-n-pentylaminoacetamide) is a secondary monoamine that in the brain is converted to glycinamide and glycine. This oxidative reaction was suspected to involve the reaction of monoamine oxidase (MAO). Using mitochondrial preparations from tissues that contain MAO-A and -B (rat brain and liver), MAO-A (human placenta), and MAO-B (human platelet and bovine adrenal chromaffin cell), it has been established that mitochondria containing MAO-B rather than MAO-A oxidize (H2O2 production and glycinamide formation) milacemide. The apparent Km (30-90 microM) for milacemide oxidation by mitochondrial MAO-B preparations is significantly lower than that for milacemide oxidation by mitochondrial MAO-A (approximately 1,300 microM). In vitro MAO-B (l-deprenyl and AGN 1135) rather than MAO-A (clorgyline) selectively inhibited the oxidation of milacemide. These in vitro data are matched by ex vivo experiments where milacemide oxidation was compared to oxidation of serotonin (MAO-A) and beta-phenylethylamine (MAO-B) by brain mitochondria prepared from rats pretreated with clorgyline (0.5-10 mg/kg) and l-deprenyl (0.5-10 mg/kg). Furthermore, in vivo experiment demonstrated that l-deprenyl selectively increased the urinary excretion of [14C]milacemide and the total radioactivity with a concomitant decrease of [14C]glycinamide. Such changes were not observed after clorgyline treatment, but were evident only at doses beyond clorgyline selectivity. The present data therefore demonstrate that milacemide is a substrate for brain MAO-B, and its conversion to glycinamide, further transformed to the inhibitory neurotransmitter, glycine, mediated by this enzyme may contribute to its pharmacological activities.  相似文献   

2.
给青年小鼠(1月龄)po尿嘧啶25—800mg/kg对脑和肝MAO-B活性抑制作用与剂量成明显量-效关系,而对MAO-A抑制较弱。多次po尿嘧啶300mg/kg对老年小鼠(18月龄)脑MAO活性抑制作用明显强于对青年小鼠,并能增加老年小鼠脑组织5-HT和DA含量。另外,随年龄增加,小鼠血、脑和肝组织MAO活性显著升高,而上述组织中尿嘧啶含量则明显降低。体外实经证明,尿嘧啶对MAO-B活性抑制程度明显强子对MAO-A,并且对MAO-B为竞争性抑制,对MAO-A为混合型抑制。  相似文献   

3.
Ro JS  Lee SS  Lee KS  Lee MK 《Life sciences》2001,70(6):639-645
The inhibitory effects of coptisine, a protoberberine isoquinoline alkaloid, on type A and type B monoamine oxidase (MAO-A and MAO-B) activities in mouse brain were investigated. Coptisine showed an inhibitory effect on MAO-A activity in a concentration-dependent manner using a substrate kynuramine, but coptisine did not inhibit MAO-B activity. Coptisine exhibited 54.3% inhibition of MAO-A activity at 2 microM. The values of Km and Vmax of MAO-A were 151.9 +/- 0.6 microM and 0.40 +/- 0.03 nmol/min/mg protein, respectively (n=5). Coptisine competitively inhibited MAO-A activity with kynuramine. The Ki value of coptisine was 3.3 microM. The inhibition of MAO-A by coptisine was found to be reversible by dialysis of the incubation mixture. These results suggest that coptisine is a potent reversible inhibitor of MAO-A, and that coptisine functions to regulate the catecholamine content.  相似文献   

4.
In rodents, SR 95191 [3-(2-morpholinoethylamino)-4-cyano-6-phenylpyridazine] has been shown to be active in animal models of depression. The profile of activity of SR 95191 suggests that the compound is a selective and short-acting type A monoamine oxidase (MAO) inhibitor (MAOI) in vivo. In the present study, the interaction of SR 95191 with MAO-A and MAO-B activity was further examined in vivo and in vitro. In brain, liver, and duodenum of pretreated rats, SR 95191 selectively inhibited MAO-A (ED50 = 3-5 mg/kg, p.o.), whereas MAO-B was only weakly inhibited for doses as high as 300 mg/kg, p.o. In vivo, SR 95191 (1-100 mg/kg, p.o.) antagonized, in a dose-dependent fashion, the irreversible inhibition of brain and liver MAO-A induced by phenelzine. Finally, dopamine and 5-hydroxytryptamine depleted from their striatal stores by tetrabenazine were able to displace SR 95191 from the active site of MAO-A. However, ex vivo, kinetic studies showed that the inhibitory effect of SR 95191 (1-10 mg/kg) towards MAO-A was noncompetitive and was unchanged after dilution or dialysis. In vitro, the inhibition of brain MAO-A, but not MAO-B, by SR 95191 was time dependent, with a 19-fold decrease in the IC50 values being observed over a 30-min incubation period (140 to 7.5 microM). At this time, the SR 95191-induced inhibition of MAO-A was not removed by repeated washings. When the reaction was started by adding the homogenate without prior preincubation with SR 95191, the inhibition of brain MAO-A was fully competitive (Ki = 68 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
N-[methyl-14C]N,N-dimethylphenylethylamine (DMPEA) was synthesized and its availability as a selective radiotracer for in vivo measurement of mouse brain monoamine oxidase (MAO) activity was examined. Relatively high incorporation of labelled DMPEA into brain (about 10% of the injected dose/per gram of brain) was observed just after its injection; however, radioactive dimethylamine, a metabolite produced from labelled DMPEA in the brain 1 h after DMPEA injection, was reduced in a dose-dependent manner by pretreatment with various doses of a specific MAO-B inhibitor, 1-deprenyl, but was not reduced appreciably by pretreatment with a specific MAO-A inhibitor, clorgyline. Pretreatment with 1-deprenyl did not affect significantly the rate of incorporation of the radiotracer DMPEA into the brain, suggesting that reduction of the radioactivity in brain by this compound might be due to a decrease in the rate of production of the radioactive metabolite dimethylamine by brain MAO-B. The amount of the radioactive metabolite trapped in the brain was found to be proportional to the brain MAO-B activity remaining after pretreatment with 1-deprenyl. In vitro deamination of DMPEA by mouse brain MAO showed a higher sensitivity to inhibition by 1-deprenyl than that by clorgyline. These results indicate that DMPEA is a selective substrate for mouse brain MAO-B both in vivo and in vitro and that the positron emitter [11C]DMPEA might be used instead of [14C]DMPEA as a radiotracer for in vivo measurement of MAO-B activity in human brain.  相似文献   

6.
The stereoelectronic properties of several potent reversible monoamine oxidase B (MAO-B) inhibitors were studied with a view to develop a pharmacophore model for reversible MAO-B inhibition. This study suggested that important specific H-bond and hydrophobic interactions are required for potent and selective MAO-B inhibition. These requirements were applied in the design and synthesis of a novel reversible and selective MAO-B inhibitor, 3-methyl-8-(4,4,4-trifluoro-butoxy)indeno[1,2-c]pyridazin-5-one, that is ca. 7000 times more selective as an inhibitor for MAO-B than for MAO-A, with K(i(MAO-B)) in the low nanomolar range.  相似文献   

7.
A series of coumarin derivatives (1-22), bearing at the 7-position ether, ketone, ester, carbamate, or amide functions of varying size and lipophilicity, were synthesized and investigated for their in vitro monoamine oxidase-A and -B (MAO-A and -B) inhibitory activities. Most of the compounds acted preferentially as MAO-B inhibitors, with IC(50) values in the micromolar to low-nanomolar range. A structure-activity-relationship (SAR) study highlighted lipophilicity as an important property modulating the MAO-B inhibition potency of 7-substituted coumarins, as shown by a linear correlation (n=20, r(2)=0.72) between pIC(50) and calculated log P values. The stability of ester-containing coumarin derivatives in rat plasma provided information on factors that either favor (lipophilicity) or decrease (steric hindrance) esterase-catalyzed hydrolysis. Two compounds (14 and 22) were selected to investigate how lipophilicity and enzymatic stability may affect in vivo MAO activities, as assayed ex vivo in rat. The most-potent and -selective MAO-B inhibitor 22 (=7-[(3,4-difluorobenzyl)oxy]-3,4-dimethyl-1-benzopyran-2(2H)-one) within the examined series significantly inhibited (>60%) ex vivo rat-liver and striatal MAO-B activities 1 h after intraperitoneal administration of high doses (100 and 300 mumol kg(-1)), revealing its ability to cross the blood-brain barrier. At the same doses, liver and striatum MAO-A was less inhibited in vivo, somehow reflecting MAO-B selectivity, as assessed in vitro. In contrast, the metabolically less stable derivative 14, bearing an isopropyl ester in the lateral chain, had a weak effect on hepatic MAO-B activity in vivo, and none on striatal MAO-B, but, surprisingly, displayed inhibitory effects on MAO-A in both peripheral and brain tissues.  相似文献   

8.
Monoamine oxidase in the vervet monkey showed greater variations in activity in six brain regions when tyramine or phenylethylamine was used as the substrate (3.8- to 4.1-fold differences) than when serotonin was the substrate (1.8-fold differences). With phenylethylamine and tyramine as substrates, the highest MAO specific activities were found in the hypothalamus and the lowest in the cerebellum and cortex. With serotonin as the substrate, the highest specific activities were in the mesencephalon and cortex. The inhibition of tyramine deamination by clorgyline and deprenyl yielded biphasic plots indicative of the presence of MAO-A and MAO-B enzyme forms in the vervet brain. On the basis of these inhibitor curves, the vervet brain could be estimated to contain approximately 85% MAO-B and 15% MAO-A, in contrast to rat brain which contains 45% MAO-B and 55% MAO-A. The inhibition of serotonin deamination by deprenyl in vervet brain yielded a biphasic plot, suggesting that some serotonin deamination in the vervet is accomplished by the MAO-B enzyme form. Estimations of the relative amounts of MAO-A and MAO-B based on inhibitor curves or based on substrate ratios yielded proportionate results which were in close agreement across the different brain regions, supporting the validity of these approaches to estimating MAO-A and MAO-B activities.  相似文献   

9.
Pargyline, an inhibitor of monoamine oxidase type B (MAO-B), did not prevent the depletion of heart norepinephrine 24 hr after a single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice. In mice killed 24 hr after the last of 4 daily doses of MPTP, the depletion of dopamine in the striatum and of norepinephrine in the frontal cortex was completely prevented by pargyline, but the depletion of heart norepinephrine was not prevented. These results with pargyline are the same as results obtained earlier with deprenyl, another selective inhibitor of MAO-B. The doses of pargyline and of deprenyl that were used resulted in almost complete inhibition of MAO-B activity (phenylethylamine as substrate) in brain, heart and liver of mice. Deprenyl did not inhibit MAO-A activity (serotonin as substrate) in brain, but pargyline caused some inhibition of MAO-A in brain. In heart and liver, serotonin was oxidized only at about 1/10 the rate of phenylethylamine oxidation, suggesting that MAO-B predominates in these tissues. Both pargyline and deprenyl caused some inhibition of serotonin deamination in heart and liver, suggesting that the oxidation may have been due partly to MAO-B. Experiments with selective MAO inhibitors in vitro showed that only about 20% of the oxidation of serotonin was occurring via MAO-B in heart and liver. The in vitro oxidation of MPTP by MAO in mouse brain, heart and liver was almost completely inhibited by pretreatment with either pargyline or deprenyl. Neither pargyline nor deprenyl had any significant effect on the concentrations of MPTP in brain or heart one-half hr after injection of MPTP into mice. The concentrations of the metabolite, MPP+ (1-methyl-4-phenyl-pyridinium), were markedly reduced in brain and in heart by pretreatment with either pargyline or deprenyl. The data suggest that MPP+ formation, which is necessary for the depletion of brain catecholamines after MPTP injection, may not be necessary for depletion of norepinephrine in heart. Since the oxidation of MPTP in vitro was inhibited more by pargyline or deprenyl pretreatment than was the appearance of MPP+ in vivo, the possibility exists that some MPP+ formation might occur by an enzyme other than MAO.  相似文献   

10.
Various mammalian tissues contain membrane-bound amine oxidase termed semicarbazide-sensitive amine oxidase (SSAO). A variety of compounds has been identified as relatively selective SSAO inhibitors, but those inhibitors currently available also inhibit monoamine oxidase (MAO). In the present study, inhibitory properties of 2-bromoethylamine (2-BEA) and 3-bromopropylamine (3-BPA) toward rat lung-bound SSAO have been studied. Regardless of preincubation, 2-BEA could not appreciably inhibit MAO-A and MAO-B activity, but 3-BPA at relatively high concentrations inhibited only MAO-B activity. 3-BPA was a competitive and reversible SSAO inhibitor with a Ki value of 17 microM regardless of preincubation. In contrast, without preincubation, 2-BEA competitively inhibited SSAO activity with the Ki value of 2.5 microM and after preincubation, the mode of inhibition changed to be noncompetitive, indicating irreversible inhibition after the preincubation. Dialysis experiments with 2-BEA-pretreated homogenate resulted in no recovery of SSAO activity even after overnight dialysis. A decreased rate of SSAO inhibition under N2 atmosphere to that obtained under O2 was produced upon preincubation of enzyme with 2-BEA, suggesting that oxidized intermediate was necessary for its inhibitory activity. Thus, 2-BEA first interacts with SSAO to form a reversible complex with a subsequent reaction, leading this complex to the covalently bound enzyme-inhibitor adduct. The data analyzed by the plot of 1/k' vs 1/2-BEA concentrations intersected on the y-axis indicate that the inhibition by 2-BEA is not mediated by a bimolecular reaction; thus it is not an affinity-labeling agent, but a suicide SSAO inhibitor. 2-BEA may be employed as a useful compound in the studying SSAO.  相似文献   

11.
3,5-Diaryl carbothioamide pyrazolines designed as mycobactin analogs (mycobacterial siderophore) were reported to be potent antitubercular agents under iron limiting condition in our earlier study. Clinical complications of newly introduced antibiotic Linezolid, due its MAO inhibitory activity, prompted us to evaluate our compounds for their MAO-inhibitory activity against rat liver MAO-A and MAO-B as pyrazolines were reported to be antidepressants and MAO inhibitors. The present study carried out with this pilot library of 32 compounds will provide us with necessary information for designing antitubercular molecules with reduced MAO-inhibitory activity and also help us in identifying a selective MAO-B inhibitor which has potential clinical utility in neurodegenerative disorders. Thirty-two compounds analyzed has shown spectrum of activity from selective to nonselective against two isoforms of rat liver MAO-A and MAO-B and also as competitive, reversible to non-competitive, irreversible. It is also interesting to note that anti-tubercular compound 11, 14 and 16 were also found to be selective inhibitors of rat liver MAO-B. Docking studies with human MAO shows that compound 11 interacts with the catalytic site of both the isoforms, suggesting compound 11 as nonselective inhibitor of human MAO isoforms.  相似文献   

12.
Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two beta-carboline alkaloids, norharman (beta-carboline) and harman (1-methyl-beta-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that beta-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K(i)=1.2+/-0.18 microM) and MAO-B (K(i)=1.12+/-0.19 microM), and harman of MAO-A (K(i)=55.54+/-5.3nM). Beta-carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that beta-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like beta-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking.  相似文献   

13.
Hypothyroidism of mild intensity was obtained with prenatal and neonatal submission of Long-Evans rats to an iodide-rich diet. Chronic daily administration of methimazole to iodide-supplemented Long-Evans pups or to iodine-deprived Charles-River rats through the first 29–30 days of age provoked severe hypothyroidism. Monoamine oxidase type A (MAO-A) and not type B (MAO-B) activity was consistently, although slightly (by approximately 20%), increased in the hypothyroid brain. Triiodothyronine (T3)-induced hyperthyroidism did not affect MAO activity. Replacement therapy with T3 did not normalize MAO-A activity in hypothyroidism. Methimazole displayed a competitive and reversible in vitro inhibition of MAO-A but not MAO-B activity. Although this effect was obtained at concentrations far higher than those estimated to reach the brain after a single injection of the goiterogen, the occurrence of accumulation processes in the metabolism-deficient hypothyroid neonate rs cannot be excluded. Thus, MAO-A activity might be either directly depressed during the goiterogenic treatment, or increased as the result of some kind of rebound effect after interruption of methimazole administration.  相似文献   

14.
4-(O-Benzylphenoxy)-N-methylbutylamine (Bifemelane, BP-N-methylbutylamine), a new psychotropic drug, was found to inhibit monoamine oxidase (MAO) in human brain synaptosomes. It inhibited type A MAO (MAO-A) competitively and type B (MAO-B) noncompetitively. BP-N-methylbutylamine had a much higher affinity to MAO-A than an amine substrate, kynuramine, and it was a more potent inhibitor of MAO-A than of MAO-B. The Ki values of MAO-A and -B were determined to be 4.20 and 46.0 microM, respectively, while the Km values of MAO-A and -B with kynuramine were 44.1 and 90.0 microM, respectively. The inhibition of MAO-A and -B by BP-N-methylbutylamine was found to be reversible by dialysis of the incubation mixture. MAO-A in human placental and liver mitochondria and in a rat clonal pheochromocytoma cell line, PC12h, was inhibited competitively by BP-N-methylbutylamine, while MAO-B in human liver mitochondria was inhibited noncompetitively, as in human brain synaptosomes. BP-N-methylbutylamine was not oxidized by MAO-A and -B. The effects of other BP-N-methylalkylamines, such as BP-N-methylethylamine, -propylamine, and -pentanylamine, on MAO activity were examined. BP-N-methylbutylamine was the most potent inhibitor of MAO-A, and BP-N-methylethylamine and -propylamine inhibited MAO-B competitively, whereas BP-N-methylbutylamine and -pentanylamine inhibited it noncompetitively. Inhibition of these BP-N-methylalkylamines on MAO-A and -B is discussed in relation to their chemical structure.  相似文献   

15.
Effects of a selective monoamine oxidase (MAO)--A inhibitor, clorgyline, a selective MAO-B inhibitor, deprenyl, and a non-selective MAO inhibitor, nialamide, were investigated on footshock-induced aggression (FIA) in paired rats. The doses and pretreatment times of the inhibitors used were based on an earlier reported in vivo dose-response and time-course study. In addition, apomorphine, a dopaminergic receptor agonist, and beta-phenylethylamine, a preferred substrate for MAO-B, were also used to garner corroborative evidence. The results of the study indicate that selective MAO-A inhibitors are likely to attenuate FIA by augmenting central serotonergic activity, while selective MAO-B inhibitors accentuate the behaviour by facilitating dopaminergic activity. A permissive role for noradrenaline could not be delineated by the available data.  相似文献   

16.
Ten novel 3,5-diaryl pyrazolines were synthesized and investigated for their monoamine oxidase (MAO) inhibitory property. All the molecules were found to be reversible and selective inhibitor for either one of the isoform (MAO-A or MAO-B). Further insights in the theoretical evaluation of the possible interactions between the compounds and monoamine oxidases (MAO-A or MAO-B) have been developed through docking studies. The theoretical values are in congruence with their experimental values.  相似文献   

17.
Chelerythrine, an isoquinoline alkaloid isolated from the herbaceous perennial Chelidonium majus, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A) with an IC50 value of 0.55?µM. Chelerythrine was a reversible competitive MAO-A inhibitor (Ki?=?0.22?µM) with a potency much greater than toloxatone (IC50?=?1.10?µM), a marketed drug. Other isoquinoline alkaloids tested did not effectively inhibit MAO-A or MAO-B. A structural comparison with corynoline suggested the 1- and/or 2-methoxy groups of chelerythrine increase its inhibitory activity against MAO-A. Molecular docking simulations revealed that the binding affinity of chelerythrine for MAO-A (?9.7?kcal/mol) was greater than that for MAO-B (?4.6?kcal/mol). Docking simulation implied that Cys323 and Tyr444 of MAO-A are key residues for hydrogen-bond interaction with chelerythrine. Our findings suggest chelerythrine is one of the most reversible selective and potent natural inhibitor of MAO-A, and that it be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.  相似文献   

18.
1-Methyl-4-phenyl-tetrahydropyridine (MPTP) given in single doses to rats depleted norepinephrine concentration in heart and mesenteric artery but had little effect on catecholamine concentration in brain. MPTP did not share with amphetamine the ability to cause persistent depletion of striatal dopamine in iprindole-treated rats. Administration of MPTP via osmotic minipumps implanted s.c. for 24 hrs after a loading dose of MPTP in rats resulted in depletion of striatal dopamine and its metabolites one week later. MPTP in vitro was a reasonably potent, competitive and reversible inhibitor of MAO-A (monoamine oxidase type A). MPTP appeared to inhibit MAO-A in rat brain in vivo as determined by its antagonism of the inactivation of MAO-A by pargyline and by its antagonism of the increase in dopamine metabolites resulting from the administration of Ro 4-1284, a dopamine releaser. The inhibition of MAO-B by MPTP in vitro was noncompetitive, time-dependent, and not fully reversed by dialysis, consistent with the findings of others that MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP given s.c. resulted in marked depletion of dopamine and its metabolites one week later, and the depletion of dopamine was completely prevented by pretreatment with deprenyl, which inhibited MAO-B but not MAO-A. These and other studies in rodents may help in elucidating the mechanisms involved in the destructive effects of MPTP on striatal dopamine neurons that lead to symptoms of Parkinson's disease in humans and in monkeys.  相似文献   

19.
Benzyloxyphenyl moiety is a common structure of highly potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B), safinamide and sembragiline. We synthesized 4-(benzyloxy)phenyl and biphenyl-4-yl derivatives including halogen substituents on the terminal aryl unit. In addition, we modified the carbon linker between amine group and the biaryl linked unit. Among synthesized compounds, 12c exhibited the most potent and selective MAO-B inhibitory effect (hMAO-B IC50: 8.9?nM; >10,000-fold selectivity over MAO-A) as a competitive inhibitor. In addition, 12c showed greater MAO-B inhibitory activity and selectivity compared to well-known MAO-B inhibitors such as selegiline, safinamide and sembragiline. In the MPTP-induced mouse model of Parkinson’s disease (PD), 12c significantly protected the tyrosine hydroxylase (TH)-immunopositive DAergic neurons and attenuated the PD-associated behavioral deficits. This study suggests characteristic structures as a MAO-B inhibitor that may provide a good insight for the development of therapeutic agents for PD.  相似文献   

20.
3-Chloro-alpha-phenylpyrazinemethanol (3-CPM) inhibited monoamine oxidase (MAO) types A and B in vivo in mouse brain, heart and liver. The inhibition was dose-dependent at doses of 0.3-32 mg/kg i.p. and occurred within 1 h after the compound was injected. 3-CPM was a very weak inhibitor of mouse brain mitochondrial MAO activity in vitro, even when preincubated with the enzyme; MAO-A was inhibited only about 50% at a high concentration of 3-CPM (1 mM), and MAO-B was inhibited even less. After a 10 mg/kg i.p. dose of 3-CPM in mice, both MAO-A and MAO-B were inhibited at day 1, but activity had largely recovered within a few days in brain, liver and heart. 3-CPM at doses of 1, 3, 10 and 32 mg/kg i.p. caused dose-dependent antagonism of the depletion of striatal dopamine and of cortical norepinephrine by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 3-CPM is therefore a potent inhibitor of MAO-A and of MAO-B in mice in vivo despite its weak effect on the enzyme in vitro. A metabolite of the drug may be involved in the in vivo effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号