首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Crithidia fasciculata, a trypanosomatid protozoan, the large ribosomal subunit contains five small RNA species (e, f, g, i, j) in addition to 5S rRNA [Gray, M.W. (1981) Mol. Cell. Biol. 1, 347-357]. The complete primary sequence of species i is shown here to be pAACGUGUmCGCGAUGGAUGACUUGGCUUCCUAUCUCGUUGA ... AGAmACGCAGUAAAGUGCGAUAAGUGGUApsiCAAUUGmCAGAAUCAUUCAAUUACCGAAUCUUUGAACGAAACGG ... CGCAUGGGAGAAGCUCUUUUGAGUCAUCCCCGUGCAUGCCAUAUUCUCCAmGUGUCGAA(C)OH. This sequence establishes that species i is a 5.8S rRNA, despite its exceptional length (171-172 nucleotides). The extra nucleotides in C. fasciculata 5.8S rRNA are located in a region whose primary sequence and length are highly variable among 5.8S rRNAs, but which is capable of forming a stable hairpin loop structure (the "G+C-rich hairpin"). The sequence of C. fasciculata 5.8S rRNA is no more closely related to that of another protozoan, Acanthamoeba castellanii, than it is to representative 5.8S rRNA sequences from the other eukaryotic kingdoms, emphasizing the deep phylogenetic divisions that seem to exist within the Kingdom Protista.  相似文献   

2.
The nucleotide sequence of ribosomal 5.8 S RNA (also known as 7 S or 5.5 S rRNA) from Novikoff hepatoma ascites cells has been determined to be (see article). Estimations of the secondary structure based upon maximized base pairing and the fragments of partial ribonuclease digestion indicate that there may be five base-paired regions in the molecule, three forming a folding of the termini and two forming secondary hairpin loops. The sequence of Novikoff hepatoma 5.8 S rRNA is about 75% homologous with that of yeast 5.8 S rRNA (Rubin, G.M. (1973) J. Biol. Chem. 248, 3860-3875) and similar models for secondary structure are proposed. Both models contain a very stable G-C rich hairpin loop (residues 116 to 138), a less stable A-U-rich hairpin loop (residues 64 to 91) and two symmetrical bulges (residues 15 to 25 and 40 to 44).  相似文献   

3.
4.
The primary structure ofTetrahymena thermophila 5S rRNA is reported. A secondary structure model is presented which can encompass most published eukaryotic 5S rRNA sequences. Unlike other eukaryotic 5S rRNAs,Tetrahymena is found to contain the sequence-CGAAC- beginning at position 40. The presence of this segment had previously been thought to be an exclusive characteristic of eubacterial 5S rRNAs.  相似文献   

5.
Evidence for the sequence of duckweed (Lemna minor) chloroplast 5S rRNA was derived from the analysis of partial and complete enzymic digests of the 32P-labelled molecule. The possible sequence of the chloroplast 5S rRNA from three other flowering plants was deduced by complete digestion with T1 ribonuclease and comparison of the sequences of the oligonucleotide products with homologous sequences in the duckweed 5S rRNA. This analysis indicates that the chloroplast 5S rNA species differ appreciably from their cytosol counterparts but bear a strong resemblance to one another and to the 5S rRNA species of prokaryotes. Structural features apparently common to all 5S rRNA molecules are also discussed.  相似文献   

6.
The nucleotide sequence of ribosomal 5 S RNA from a halophilic bacterium, Halobacterium cutirubrum, grown in 4 M sodium chloride is U-U-A-A-G-G-C-G-G-C-C-A-U-A-G-C-G-G-U-G-G-G-G-U-U-A-C-U-C-C-C-G-U-A-C-C-C-A-U-C-C-C-G-A-A-C-A-C-G-G-A-A-G-A-U-A-A-G-C-C-C-G-C-C-U-G-C-G-U-U-C-C-G-G-U-C-A-G-U-A-C-U-G-G-A-G-U-G-C-G-A-G-C-C-U-C-U-G-G-G-A-A-A-U-C-C-G-G-U-U-C-G-C-C-G-C-C-U-A-C-U. This nucleotide sequence is the longest prokaryotic 5 S rRNA to be reported and unlike other 5 S species does not contain a terminal mononucleoside diphosphate residue at its 5'-end. When compared to other 5 S rRNA's, the sequence homology is greatest (about 68%) with Bacillus subtilis; there is a lower but similar degree of homology (about 58%) with either Escherichia coli or human 5 S RNA. The comparisons further indicate that among 5 S RNA's, eleven of the nucleotide residues are unique to H. cutirubrum. Estimates of the secondary structure of the H. cutirubrum 5 S RNA molecule contain one additional stable hairpin loop which is not found in other 5 S rRNA species; this unusual structure is probably an adaptation to the high salt environment within H. cutirubrum cells.  相似文献   

7.
8.
Broad-bean 5S rRNA labelled with (32)P was digested separately with T(1) and pancreatic A ribonucleases and the resulting oligonucleotides (20 and 18 respectively) were fractionated by two-dimensional electrophoresis. The oligonucleotides were analysed further and 32 of them have been completely sequenced. They were compared with those of 5S rRNA from dwarf bean, sunflower, tomato and rye. Sequence differences were found at both the 3'- and 5'-termini and at up to nine other positions. Most base substitutions were transitions between C and U. In common with other 5S rRNA species that have been analysed the ends of the molecule in each plant species have complementary sequences.  相似文献   

9.
10.
The ribonucleic acids of Crithidia fasciculata   总被引:3,自引:0,他引:3  
Crithidia fasciculata ribosomes were found to be 80S and to dissociate into 58 and 41S subunits; on 5 to 50% sucrose gradients, rRNA was separated into 25, 18, and 5S components. The molecular sizes of the heavier rRNA species, estimated by polyacrylamide gel electrophoresis were 1.24 and 0.84 M (X 10(6) daltons). The 25S RNA has a tendency to interact with the 18S RNA to give a complex that is difficult to separate by sucrose gradient centrifugation. The 25S RNA is also unstable and dissociates into 0.73 and 0.57 M components. The 18S RNA has molecular size (0.84 M) higher than the 0.7 M reported for most eukaryotes, but similar to that of Euglena and Amoeba. Ribosomal RNA hybridized 0.29% of the nuclear DNA. Mitochondrial RNA, extracted by a rapid procedure was resolved into 16 and 5S components in sucrose gradients.  相似文献   

11.
The nucleotide sequences of wheat embryo 5.8-S and 5-S rRNAs have been determined with the use of several techniques, including classic analysis of oligonucleotides generated by ribonuclease T1 and resolution on gels of terminally labelled RNA partially degraded with ribonucleases or with chemical reagents. The sequence of wheat embryo 5.8-S rRNA was found to be (formula: see text). This sequence is compared to 5-S rRNA sequences previously published for wheat and several other angiosperms.  相似文献   

12.
13.
Nucleotide distribution of Escherichia coli 16S ribosomal ribonucleic acid   总被引:2,自引:0,他引:2  
A Muto 《Biochemistry》1970,9(19):3683-3694
  相似文献   

14.
15.
16.
17.
18.
19.
Summary The nucleotide sequence of cytoplasmic 5S ribosomal RNA fromEuglena gracilis has been determined to be: G- A C -G-U-A-C-G-G-C-C-A-U-A-C-U-A-C-C-G-G-G-A-A-U-A-C-A-C-C-U-G-A-A-C-C-C-G--U-C-G-A-U-U-U-C-A-G-A-A-G-U-U-A-A-G-C-C-G-G-G-U-U-A-G-G-C-C-C-A-G-U-U-A-G-U-A-C-U-G-A-G-U-G-G-G-C-G-A-C-C-A-C-U-U-G-G-G-A-A-C-A-C-U-G-G-G-U-G-C-U-G-U-A-C-G-C-U-Up. This RNA is 119 nucleotides long and the sequence of a probable tRNA-binding site is GAUU (position 41–44 from the 5-terminus), which is the same as that of a trypanosoma species,Crithidia fasci-culata. TheEuglena 5S rRNA has a pseudouridine residue at position 38 and 3-terminus is phosphorylated. The 5S rRNA sequence ofEuglena resembles those of several other protozoa and higher animals rather than plants.On leave from Department of Zoology, Hiroshima University, Hiroshima, Japan  相似文献   

20.
The nucleotide sequences were determined for the 5'-oligonucleotides obtained by complete pancreatic RNase digestion (P25) and complete T1 RNase digestion (T27) of U-2 RNA. Complete digestion of oligonucleotide P25 with snake venom phosphodiesterase produced pm3 2,2,7G, pAm, pUm, and pCp in approximately equimolar ratios. Partial digestion of these oligonucleotides with snake venom phosphodiesterase produced -Um-C-Gp and pAm-Um, indicating the sequence of the 3'-terminal portion of the 5'-oligonucleotide is pAm-Um-C-Gp. The 5'-terminal oligonucleotide did not contain a 5'-phosphate and no free nucleoside was released from the 5' end by venom phosphodiesterase digestion. Since free pm3 2,2,7G was released by digestion with nucleotide pyrophosphatase and limited digestion with snake venom phosphodiesterase, this nucleotide is apparently linked to pAm in a pyrophosphate linkage. Mass spectrometry and thin layer chromatography in borate systems showed the ribose of m3 2, 2, 7G contains no 2'O-methyl residue. Moreover, the finding that the ribose of m3 2, 2, 7G was oxidized by NaIO4 and reduced by KB3H4 in intact U-2 RNA rules out other linkages involving the 2' and 3' positions. Accordingly, it is concluded that the structure of the 5'-terminal pentanucleotide of U-2 RNA is(see article).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号