首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.  相似文献   

2.
Following binding of platelet-derived growth factor (PDGF), the PDGF alpha receptor (alphaPDGFR) becomes tyrosine phosphorylated and associates with a number of signal transduction molecules, including phospholipase Cgamma-1 (PLCgamma-1), phosphatidylinositol 3-kinase (PI3K), the phosphotyrosine phosphatase SHP-2, Grb2, and Src. Here, we present data identifying a novel phosphorylation site in the kinase insert domain of the alphaPDGFR at tyrosine (Y) 720. We replaced this residue with phenylalanine and expressed the mutated receptor (F720) in Patch fibroblasts that do not express the alphaPDGFR. Characterization of the F720 mutant indicated that binding of two proteins, SHP-2 and Grb2, was severely impaired, whereas PLCgamma-1 and PI3K associated to wild-type levels. In addition, mutating Y720 to phenylalanine dramatically reduced PDGF-dependent tyrosine phosphorylation of SHP-2. Since Y720 was required for recruitment of two proteins, we investigated the mechanism by which these two proteins associated with the alphaPDGFR. SHP-2 bound the alphaPDGFR directly, whereas Grb2 associated indirectly, most probably via SHP-2, as Grb2 and SHP-2 coimmunoprecipitated when SHP-2 was tyrosine phosphorylated. We also compared the ability of the wild-type and F720 alphaPDGFRs to mediate a number of downstream events. Preventing the alphaPDGFR from recruiting SHP-2 and Grb2 did not compromise PDGF-AA-induced activation of Ras, initiation of DNA synthesis, or growth of cells in soft agar. We conclude that phosphorylation of the alphaPDGFR at Y720 is required for association of SHP-2 and Grb2 and tyrosine phosphorylation of SHP-2; however, these events are not required for the alphaPDGFR to activate Ras or initiate a proliferative response. In addition, these findings reveal that while SHP-2 binds to both of the receptors, it binds in different locations: to the carboxy terminus of the betaPDGFR but to the kinase insert of the alphaPDGFR.  相似文献   

3.
4.
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.  相似文献   

5.
The platelet-derived growth factor beta receptor (betaPDGFR) is a receptor tyrosine kinase involved in multiple aspects of cell growth and differentiation. Upon activation, betaPDGFR is phosphorylated at up to nine different tyrosine residues. Phosphorylation of the receptor results in at least two different outcomes: recruitment of signaling molecules and activation of intrinsic receptor kinase activity. In order to evaluate the phosphorylation state of the receptor, phosphospecific antibodies were generated against peptides encompassing betaPDGFR phospho-Y751, phospho-Y771, or phospho-Y857. When phosphorylated, these sites enable the receptor to recruit signaling molecules PI3K or RasGAP, or enhance the receptor's kinase activity, respectively. We found that receptors phosphorylated at Y751, Y771, and Y857 display distinct temporal and spatial distribution by immunofluorescence. Subsequent biochemical studies revealed that receptor function corresponding to each of the phosphorylated sites was regulated as a function of time. Within the first 10 min, PDGF enhanced the receptor's kinase activity and initiated recruitment of PI3K and RasGAP. After prolonged exposure to PDGF, PI3K binding persisted to approximately 85% of the amount bound at 10 min, whereas binding of RasGAP and the exogenous kinase activity of the receptor diminished to less than 15% of the levels displayed at 10 min. We conclude that the phosphorylation state of the receptor, as well as its signaling capacity, is dynamic and changes as cells are continuously exposed to PDGF.  相似文献   

6.
Mutating tyrosines 579 and 581 of the beta platelet-derived growth factor receptor (betaPDGFR) tyrosine kinase to phenylalanines (the F2 mutation) impair activation of the receptor in response to ligand, but mutation of the analogous tyrosines in the alphaPDGFR has no effect on ligand-dependent receptor activation. We have found that the F2 mutation has only a modest effect on ligand-dependent activation of a chimeric PDGFR composed of the extracellular and transmembrane domains of the alphaPDGFR and the cytoplasmic domain of the betaPDGFR by three measures: (1) the ability to phosphorylate endogenous and exogenous protein substrates in vitro, (2) phosphorylation of tyrosine 857, and (3) binding of the effector proteins PLCgamma, RasGAP, and SHP-2. Conversely, the F2 mutation substantially impairs ligand-dependent activation of chimeric PDGFRs that consist of either the extracellular domain alone or the extracellular and transmembrane domains of the betaPDGFR and all remaining sequence from the alphaPDGFR by two measures: (1) phosphorylation of endogenous protein substrates in vitro and (2) binding of PLCgamma and SHP-2. Our results indicate that the requirement of tyrosines 579 and 581 for maximal activation of the betaPDGFR in response to ligand is primarily determined by noncytoplasmic regions of the receptor.  相似文献   

7.
Estrogens are known to display significant vasoprotective effects in premenopausal women. PDGF is an important mediator of vascular smooth muscle cell (VSMC) migration and proliferation, and thus atherogenesis. We analyzed the effects of 17beta-estradiol (E2) on beta-PDGF receptor (beta-PDGFR) expression/activation and PDGF-dependent VSMC proliferation, migration, and downstream signaling events. Pretreatment of VSMCs with E2 (0.3 microM-0.1 mM) for 24 h concentration-dependently inhibited PDGF-induced proliferation and migration up to 85.5 +/- 15.8% and 79.4 +/- 9.8%, respectively (both P < 0.05). These effects were prevented by coincubation with the ER antagonist ICI-182780. E2 did not alter beta-PDGFR expression, nor did it impair the ligand-induced tyrosine phosphorylation of the beta-PDGFR and consecutive binding of the receptor-associated signaling molecules Src homology region 2-containing phosphatase-2, PLC-gamma, phosphatidylinositol 3-kinase, and RasGAP. Thus estrogens inhibited PDGF-induced cellular responses at the postreceptor level. Although stimulation of VSMCs with PDGF-BB led to a transient increase of rac-1 activity, pretreatment with E2 for 24 h concentration-dependently inhibited PDGF-induced rac-1 activation. Furthermore, inhibition of rac-1 by Clostridium sordellii lethal toxin or overexpression of dominant-negative rac-1 (rac-N17) significantly inhibited PDGF-induced VSMC migration, indicating that rac-1 activity is essential for PDGF-dependent cellular responses. E2 did not further reduce PDGF-induced migration in rac-N17-overexpressing cells, suggesting that it diminishes VSMC migration by altering rac-1 activity. We conclude that E2 attenuates PDGF-dependent cellular functions of VSMCs downstream of the beta-PDGFR via inhibition of rac-1. These observations offer a molecular explanation for the vasoprotective effects of estrogens.  相似文献   

8.
Lad was previously identified as an adaptor protein binding to the SH2 domain of Lck (1). Specific detection of Lad mRNA in lung cells, as well as, in T cells led us to investigate the signaling pathways regulating Lad in lung cells. We found that (i) upon PDGF stimulation, Lad expression is induced in lung cells, especially in the bronchial epithelial cells; (ii) Lad is tyrosine phosphorylated upon PDGF stimulation and is associated with PDGF receptor; (iii) upon PDGF stimulation, Grb2 is recruited to Lad in human embryonic lung cells; (iv) overexpression of Lad elevated AP-1 promoter activity by two- to threefold, whereas dominant negative Lad abrogated PDGF-dependent activation of AP-1 promoter. These results provide a novel mechanism of PDGF-dependent signaling, in which Lad acts as an adaptor in a tissue-specific manner, linking PDGF signal to Grb2 and subsequent activation of AP-1.  相似文献   

9.
BACKGROUND: Platelet-derived growth factor (PDGF) promotes cell-cycle progression by engaging signaling enzymes such as phospholipase Cgamma (PLCgamma). When activated, PLCgamma cleaves phosphatidylinositol-4,5-bisphosphate to produce inositol-1,4, 5-trisphosphate (IP(3)) and diacylglycerol (DAG). IP(3) stimulates the release of calcium from intracellular stores, which together with DAG activate some protein kinase C (PKC) family members. In this study we focused on putative downstream effectors of PLCgamma - PKC family members. We investigated whether, and when, DAG-responsive PKCs contribute to PDGF-dependent DNA synthesis. RESULTS: In HepG2 cells expressing wild-type PDGF beta receptors (betaPDGFRs), PDGF activated at least one PKC family member (PKCepsilon) at two distinct times - within 10 minutes after PDGF stimulation, and then for a longer duration between 5 and 9 hours. Blocking the early burst of PKC activity had no effect on PDGF-dependent DNA synthesis. In contrast, the DNA-synthesis response was reduced by 60-80% when the second phase of PKC activity was blocked. Similarly, DAG rescued PDGF-dependent DNA synthesis in the cells expressing a mitogenically incompetent mutant betaPDGFR, but only when DAG was added at times corresponding to the late phase of PKC activity. Our studies also indicate that the late phase of PKCepsilon activity can be induced by either phosphoinositide 3-kinase-dependent or DAG-dependent pathways in PDGF-stimulated HepG2 cells. CONCLUSIONS: We conclude that PDGF activates PKCs at two distinct times and that these two intervals of PKC activity make unequal contributions to the mitogenic response. The late phase of PKC activity is required for PDGF-dependent DNA synthesis, whereas the early phase of activity is dispensable.  相似文献   

10.
The dimerization and auto-transphosphorylation of platelet-derived growth factor receptor (PDGFR) upon engagement by platelet-derived growth factor (PDGF) activates signals promoting the mitogenic response of hepatic stellate cells (HSCs) due to liver injury, thus contributing to the development of hepatic fibrosis. We demonstrate that the tyrosine phosphatases Src homology 2 domain-containing phosphatase 1 and 2 (SHP-1 and SHP-2) act as crucial regulators of a complex signaling network orchestrated by PDGFR activation in a spatio-temporal manner with diverse and opposing functions in HSCs. In fact, silencing of either phosphatase shows that SHP-2 is committed to PDGFR-mediated cell proliferation, whereas SHP-1 dephosphorylates PDGFR hence abrogating the downstream signaling pathways that result in HSC activation. In this regard, SHP-1 as an off-switch of PDGFR signaling appears to emerge as a valuable molecular target to trigger as to prevent HSC proliferation and the fibrogenic effects of HSC activation. We show that boswellic acid, a multitarget compound with potent anti-inflammatory action, exerts an anti-proliferative effect on HSCs, as in other cell models, by upregulating SHP-1 with subsequent dephosphorylation of PDGFR-β and downregulation of PDGF-dependent signaling after PDGF stimulation. Moreover, the synergism resulting from the combined use of boswellic acid and imatinib, which directly inhibits PDGFR-β activity, on activated HSCs offers new perspectives for the development of therapeutic strategies that could implement molecules affecting diverse players of this molecular circuit, thus paving the way to multi-drug low-dose regimens for liver fibrosis.  相似文献   

11.
Certain platelet-derived growth factor (PDGF) isoforms are associated with proliferative vitreoretinopathy (PVR), a sight-threatening complication that develops in a subset of patients recovering from retinal reattachment surgery. Although these PDGF isoforms are abundant in the vitreous of patients and experimental animals with PVR, they make only a minor contribution to activating PDGF receptor α (PDGFRα) and driving experimental PVR. Rather, growth factors outside of the PDGF family are the primary (and indirect) agonists of PDGFRα. These observations beg the question of why vitreal PDGFs fail to activate PDGFRα. We report here that vitreous contains an inhibitor of PDGF-dependent activation of PDGFRα and that a major portion of this inhibitory activity is due to vascular endothelial cell growth factor A (VEGF-A). Furthermore, recombinant VEGF-A competitively blocks PDGF-dependent binding and activation of PDGFR, signaling events, and cellular responses. These findings unveil a previously unappreciated relationship between distant members of the PDGF/VEGF family that may contribute to pathogenesis of a blinding eye disease.  相似文献   

12.
K-Ras-negative fibroblasts are defective in their steady-state expression of MMP-2. This occurs through c-K(B)-Ras dependent regulation of basal levels of AKT activity. In this report, we have extended those studies to demonstrate that in the absence of K-Ras expression, PDGF-BB fails to induce significant AKT activation, although this was not the case in N-Ras-negative cells. This phenotype was directly linked to PDGF-dependent cell migration. All of the independently immortalized K-Ras-negative cells failed to migrate upon the addition of PDGF. Only ectopic expression of c-K(B)-Ras, not c-K(A)-Ras nor oncogenic N-Ras, could restore both PDGF-dependent AKT activation and cell migration. Since most Ras binding partners can interact with all Ras isoforms, the specificity of PDGF-dependent activation of AKT and enhanced cell migration suggests that these outcomes are likely to be regulated through a c-K(B)-Ras-specific binding partner. Others have published that of the four Ras isoforms, only K(B)-Ras can form a stable complex with calmodulin (CaM). Along those lines, we provide evidence that 1) PDGF addition results in increased levels of a complex between c-K(B)-Ras and CaM and 2) the biological outcomes that are strictly dependent on c-K(B)-Ras (AKT activation and cell migration) are blocked by CaM antagonists. The PDGF-dependent activation of ERK is unaffected by the absence of K(B)-Ras and presence of CaM antagonists. This is the first example of a linkage between a specific biological outcome, cell migration, and the activity of a single Ras isoform, c-K(B)-Ras.  相似文献   

13.
Autophosphorylation of the platelet-derived growth factor (PDGF) receptor triggers intracellular signaling cascades as a result of recruitment of Src homology 2 domain-containing enzymes, including phosphatidylinositol 3-kinase (PI3K), the GTPase-activating protein of Ras (GAP), the protein-tyrosine phosphatase SHP-2, and phospholipase C-gamma1 (PLC-gamma1), to specific phosphotyrosine residues. The roles of these various effectors in PDGF-induced generation of H(2)O(2) have now been investigated in HepG2 cells expressing various PDGF receptor mutants. These mutants included a kinase-deficient receptor and receptors in which various combinations of the tyrosine residues required for the binding of PI3K (Tyr(740) and Tyr(751)), GAP (Tyr(771)), SHP-2 (Tyr(1009)), or PLC-gamma1 (Tyr(1021)) were mutated to Phe. PDGF failed to increase H(2)O(2) production in cells expressing either the kinase-deficient mutant or a receptor in which the two Tyr residues required for the binding of PI3K were replaced by Phe. In contrast, PDGF-induced H(2)O(2) production in cells expressing a receptor in which the binding sites for GAP, SHP-2, and PLC-gamma1 were all mutated was slightly greater than that in cells expressing the wild-type receptor. Only the PI3K binding site was alone sufficient for PDGF-induced H(2)O(2) production. The effect of PDGF on H(2)O(2) generation was blocked by the PI3K inhibitors LY294002 and wortmannin or by overexpression of a dominant negative mutant of Rac1. These results suggest that a product of PI3K is required for PDGF-induced production of H(2)O(2) in nonphagocytic cells, and that Rac1 mediates signaling between the PI3K product and the putative NADPH oxidase.  相似文献   

14.

Background

The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule.

Methodology/Principal Findings

To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis.

Conclusions/Significance

Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events.  相似文献   

15.
The role of RasGAP was investigated in the model system of Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) stimulated by fibroblast growth factor 1 (FGF1). The injection of the SH2-SH3-SH2 domains of RasGAP suppressed Ras activity, extracellular signal-regulated protein kinase 2 (ERK2) phosphorylation and Mos synthesis. The SH2 domain of Src, and PP2, an inhibitor of Src, also abolished Ras activity, ERK2 phosphorylation and Mos synthesis. In addition, Src activity was blocked by the SH2-SH3-SH2 domains of RasGAP. Immunoprecipitation of a chimera composed of the extracellular domain of the platelet-derived growth factor (PDGF) receptor and the intracellular domain of FGFR1 stimulated by PDGF-BB demonstrates the recruitment of phosphorylated RasGAP. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes involves RasGAP as a co-activator of Src to stimulate the Ras/mitogen-activated protein kinase cascade and Mos synthesis. It emphasises a new positive regulatory role for RasGAP in FGFR transduction.  相似文献   

16.
The beta subunit of the platelet derived growth factor receptor (PDGFR) coprecipitates with a phosphatidyl-inositol 3 kinase activity (PI3K) following stimulation of cells by PDGF. Mutagenesis of a tyrosine (Y) phosphorylation site, Y751, in the PDGFR, greatly reduces PI3K, consistent with the possibility that phosphorylation of Y751 signals association of PI3K. To test this we have reconstituted the binding of the PDGFR beta subunit and PI3K in vitro. Binding is rapid, saturable and requires phosphorylation of the PDGFR at Y751, but does not require PDGF-dependent phosphorylation of PI3K. To test which portions of the PDGFR are important for binding, we used an antibody to a small region of the receptor that includes Y751. This antibody blocked in vitro binding of PI3K to the receptor, while an antiserum to the C-terminus of the receptor had no effect on binding of PI3K. In addition, we found that PDGF stimulation of a cell results in the association of essentially all the PI3K activity with cellular PDGFRs. These data suggest that PI3K is a specific ligand for PDGF receptors that are phosphorylated at Y751.  相似文献   

17.
We previously showed an agarose overlay on keratocytes cultured in media containing pharmacological levels of insulin enhanced collagen processing and collagen fibril formation. In this study, we compared collagen processing by keratocytes cultured in media containing physiological levels of IGF-I, TGF-β, FGF-2, and PDGF in standard and in agarose overlay cultures. Pepsin digestion/SDS PAGE was used to determine the levels of procollagen secreted into the media and the collagen content of the ECM associated with the cell layer. Distribution of collagen type I and fibronectin in the ECM of the agarose cultures was determined by immunoflorescence. Collagen fibril and keratocyte morphology was evaluated by electron microscopy. The agarose overlay significantly enhanced the cell number in the IGF-I, TGF-β and PDGF treated cultures by 2–3 fold. The overlay also significantly enhanced the processing of procollagen to collagen fibrils from 29% in standard cultures to 63–68% in agarose cultures for the IGF-I and PDGF cultures, and from 66% in standard culture to 85% in agarose culture for the TGF-β cultures. Cell accumulation and collagen processing was not enhanced by agarose overlay of the FGF-2 treated cultures. Collagen type I and fibronectin were more uniformly distributed and the collagen fibrils smaller in the ECM of the TGF-β treated cultures. Keratocytes in the FGF-2 treated cultures were in close cell contact with few collagen fibrils while IGF-I, TGF-β, and PDGF cultures had an extensive ECM with abundant collagen fibrils. The results of this study indicate that the agarose overlay enhances collagen fibril assembly and cell accumulation by keratocytes when both collagen synthesis and cell proliferation are stimulated.  相似文献   

18.
The basal activity of Src family kinases is readily detectable throughout the cell cycle and increases by two- to fivefold upon acute stimulation of cells with growth factors such as platelet-derived growth factor. Previous reports have demonstrated a requirement for Src activity for the G1/S and G2/M transitions. With a chimeric α-β PDGF receptor (PDGFR) expressed in fibroblasts, we have investigated the importance of the PDGF-mediated increase in Src activity at the G0/G1 transition for subsequent cell cycle events. A mutant PDGFR chimera that was not able to detectably associate with or activate Src was compromised in its ability to mediate tyrosine phosphorylation of receptor-associated signaling molecules and initiated a submaximal activation of Erk. In contrast to these early cell cycle events, later responses such as entry of cells into S phase and cell proliferation proceeded normally when Src activity did not increase following acute stimulation with PDGF. We conclude that the initial burst of Src activity is required for efficient tyrosine phosphorylation of receptor-associated proteins such as PLCγ, RasGAP, Shc, and SHP-2 and for maximal activation of Erk. Surprisingly, these events are not required for PDGF-dependent cell proliferation. Finally, later cell cycle events do not require that Src be activated at the G0/G1 transition and leave open the possibility that events such as the G1/S transition require the basal Src activity and/or activation of Src at later times in G1.  相似文献   

19.
Ras GTPase activating protein (GAP) possesses a C-terminal domain that interacts with GTP-bound Ras, and an N-terminal region containing two SH2 domains and an SH3 domain. In addition to its association with Ras, GAP binds stably to autophosphorylated beta PDGF receptors, and to two cytoplasmic phosphoproteins: p62, an RNA binding protein, and p190, which possesses GAP activity towards small guanine nucleotide binding proteins in the Rho/Rac family. To define the region of GAP that mediates these interactions with cellular phosphoproteins, and to investigate the biological significance of these complexes, a truncated GAP polypeptide (GAP-N) containing residues 1-445 was stably expressed in Rat-2 fibroblasts. GAP-N contains the SH2 and SH3 domains, but lacks the Ras GTPase activating domain. Stimulation of cells expressing GAP-N with PDGF induced association of GAP-N with the beta PDGF receptor, and phosphorylation of GAP-N on tyrosine, consistent with the notion that GAP SH2 domains direct binding to the autophosphorylated beta PDGF receptor in vivo. GAP-N bound constitutively to p190 in both serum-deprived and growth factor-stimulated cells. This GAP-N-p190 complex had Rho GAP activity in vitro. The expression of GAP-N in Rat-2 cells correlated with changes in the cytoskeleton and in cell adhesion, typified by the disruption of action stress fibres, a reduction in focal contacts, and an impaired ability to adhere to fibronectin. These results suggest that the N-terminal domain of GAP can direct interactions with cellular phosphoproteins in vivo, and thereby exert an effector function which modulates the cytoskeleton and cell adhesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
BACKGROUND: Platelet-derived growth factor (PDGF) triggers cytoskeletal rearrangements and chemotaxis within minutes. These events are at least in part due to the activation of phosphoinositide (PI) 3-kinase; there is good temporal correlation between these events and the accumulation of 3-phosphorylated products of the kinase. Prolonged and continuous PDGF exposure results in S-phase entry many hours after the initial burst of activity. Although early signals appear responsible for the early responses, they may not fully account for later responses, such as cell-cycle progression. RESULTS: We assessed when PI 3-kinase products accumulate in PDGF-stimulated cells. In addition to the previously identified early accumulation of products, we detected a second, prolonged wave of accumulation 3-7 hours after stimulation. To determine the relative contribution of each phase to PDGF-dependent DNA synthesis, we first developed an assay in which synthetic 3-phosphorylated lipids were used to rescue DNA synthesis in cells expressing a PDGF-receptor mutant. The lipids rescued DNA synthesis only when added 2-6 hours after PDGF. In addition, PI 3-kinase inhibitors failed to block PDGF-dependent DNA synthesis if added during the first wave of PI 3-kinase activity, but adding them later, in G1 phase, prevented PDGF-dependent cell-cycle progression. CONCLUSIONS: PDGF induces distinct waves of PI 3-kinase activity. The second wave is required for PDGF-dependent DNA synthesis, whereas the initial wave is not. One of the ways in which cells use PI 3-kinase to mediate distinct cellular responses seems to be by regulating when its products accumulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号